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Abstract—Blockchain is increasingly being used in various
research disciplines, such as Internet of Things (IoT), Software
Defined Networking (SDN), logistics, etc. Hyperledger Fabric is
a popular enterprise-grade blockchain framework that falls into
the category of the permissioned blockchains, making it particu-
larly effective at ensuring transparency for secure communication
among peers, such as the SDN controllers of an IoT network.
One of the most prominent aspects of Hyperledger Fabric is its
three-phase transaction flow architecture, which consists of the
execution, ordering and validation phases. The ordering phase
involves communication between the client and the ordering
service, as the latter is responsible for the transaction assembly
and distribution. This study reconstructs the ordering phase
and proposes a mechanism for faster communication between
the client and the ordering service. While adjusting various
blockchain parameters, a performance analysis is carried out to
examine the blockchain behavior with the applied mechanism.
The experiments reveal performance improvements on various
metrics when compared to the existing ordering phase. Notably,
the proposed mechanism can be easily integrated in a future
Hyperledger Fabric release.

Index Terms—Blockchain, Hyperledger Fabric, Raft, Ordering
Service, Performance Analysis.

I. INTRODUCTION

Blockchain technology was first introduced in 2008 as the

distributed ledger behind Bitcoin transactions. Since then, the

technology has grown in popularity and interest for a variety

of applications, including secure communication between SDN

controllers in an IoT network [1]. Blockchain creates decen-

tralized ledgers used to record transactions (TXs) between

peers without the requirement for external validation. The

TXs cannot be modified and are collected into blocks that

form a chain of immutable records. Each associated peer

has a unique copy of the ledger, and each copy is accurate

and consistently updated. For this purpose, blockchain uses

a computational process called consensus, where each TX is

verified and confirmed by all the peers involved.

Numerous blockchain models have emerged in response to

the diverse needs of blockchain users. All of these models

are classified into two broad categories: permissionless and

permissioned. Permissionless blockchains allow anyone to

join the network, making the ledger public. Permissioned

blockchains, on the other hand, do not allow anyone to join

the network and are only accessible to a specific set of

known-identified peers. The permissioned model is adopted

by Hyperledger Fabric [2], [3], an open-source project created

by the Linux Foundation for secure information sharing among

various entities, such as SDN controllers [4]. Hyperledger
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(b) Leader receives TX indirectly
from the client.

Fig. 1. Hyperledger Fabric network with 3 Raft-operated orderers. O2 is
always Leader. The number of each arrow indicates its time-sequence.

Fabric is regarded as one of the most efficient blockchain

platforms today, employing a three-phase TX flow architecture

of Execution-Ordering-Validation. This architecture states that

during the execution phase, clients send their TX proposals to

a specific group of peers for endorsement, and after that, smart

contracts are executed generating ledger updates. The ordering

phase follows, during which the endorsed TXs are submitted

to another specific group of peers, named ordering service, to

be assembled into blocks and distributed to all other peers.

The peers consisting the ordering service are called orderers.

Finally, during the validation phase, the peers validate the

received blocks to ensure that all ledgers remain consistent.

It is clear from the TX flow architecture of Hyperledger

Fabric that the ordering service has a significant impact on its

performance. Hyperledger Fabric provides several protocols

for achieving consensus among the orderers, including Solo,

Kafka and Raft [5], [6]. Raft is the most widespread option at

the moment, being Crash Fault Tolerant (CFT) and following

a “Leader & Follower” model. According to this model,

a single orderer is elected as Leader and all others are

Followers. All TXs sent to the ordering service, even those

delivered to a Follower, are directed to the Leader. The indirect

communication with the Leader, through a Follower, causes an

extra delay in the TX submission, which is depicted with the

red arrow of Step #2 in Figure 1(b). This step does not occur

in Figure 1(a), where the TX is transmitted directly to the

Leader.

This paper introduces a mechanism that allows the clients

to communicate directly with the Leader. A comprehensive

performance analysis of the TX flow architecture of Hyper-

ledger Fabric is presented, showing how the direct communi-



cation with the Leader enhances it under various blockchain

configurations. The performance analysis is done with the

official Hyperledger benchmarking tool, named Hyperledger

Caliper. The paper is divided into the following sections.

Section II presents related work and Section III describes in

detail the proposed mechanism for direct communication with

the Leader. Section IV focuses on the benchmarking and the

experimentation results. Finally, Section V concludes the paper

and presents implications for future work.

II. RELATED WORK

Multiple academic sectors have recently given a lot of

attention to the benefits of the blockchain technology, and

thus there has been a great deal of interest in the scalability

and performance traits of the blockchain networks, like the

ones of Hyperledger Fabric [2], as well as the influence of

the deployed consensus protocols [7]. Concerning Hyperledger

Fabric, there have been many attempts to optimize it’s per-

formance, like altering the state of GoLevelDB and the size

of StateDB [8], not to mention the experimention with I/O,

caching, parallelism and efficient data access to support up

to 20K tps [9]. Regarding the validation phase, the authors

in [10] propose its improvement by utilizing a chaincode

cache during the TX validation and executing StateDB reads

in parallel with the validation of transactions, as well as

parallel writes to the ledger and the databases. In [11], the

authors experiment with similar enhancements, implementing

an improved caching mechanism and a validation mechanism

that is executed in parallel with the endorsement phase.

As for the ordering phase, in [12], the performance of

Fabric++ [13] is evaluated using conflict graphs for each

transaction in a block, noting the cycles in these graphs during

the ordering phase and creating acyclic graphs that are sent

to the validation phase. In [14], a mechanism is proposed

that improves the ordering phase but on an older version of

Hyperledger Fabric (v1.3) that does not support Raft. Our

work differs from theirs, as we extend the latest version of

Hyperledger Fabric, by enhancing the Raft-based ordering

service with respect to the underlying network, applying the

results of [15] and [16] to the blockchain environment.

Apart from the optimization, a significant amount of effort

has been devoted to the performance evaluation of Hyperledger

Fabric. Following a more theoretical approach, both [17] and

[18] create theoretical models concerning Hyperledger Fabric’s

performance, while experimenting with the three-phase TX

flow architecture of Execution-Ordering-Validation. Further-

more, [19] provides the first study to introduce network delays

on a PBFT-based blockchain, giving a better inside on how

the networking side of blockchain can effect it’s performance,

while [20] analyzes each part of the TX life cycle separately.

Contrary to those, our work is more specific as it gives an

overall performance analysis of the blockchain network, while

experimenting with network delays and also providing an

enhanced ordering service. Lastly, the performance analysis

conducted on this paper observes the blockchain’s behaviour

with the proposed ordering service being integrated, while

experimenting with different configurable parameters as ex-

plained in [21].

III. DIRECT COMMUNICATION WITH LEADER

Most ordering service details are currently hidden from the

blockchain clients, which do not know how many orderers

exist or which one is the Leader. Each client generates and

submits TXs to a randomly chosen orderer, which, unless it is

the Leader, forwards the TXs to the Leader (as it is depicted

in Figure 1(b)). This simplified approach is well suited to a

variety of situations where the latency among the orderers is

negligible. However, there are instances where the orderers,

for added resilience, may be geographically dispersed, and

their interconnections exhibit non-negligible delays. In this

case, it is very critical that the proposed mechanism provides

the clients with the opportunity to interact directly with the

Leader. This way, the overhead caused from the TX redirection

is eliminated. Apart from that, the Leader that is in charge

of grouping the TXs into blocks handles them more quickly.

Considering the aforementioned points, it is anticipated that

the direct communication with the Leader enhances blockchain

performance over the indirect communication. Direct commu-

nication has the disadvantage of stressing the Leader more

in terms of CPU utilization, as we will find out later in our

experimentation, but this is a small price to pay for cutting the

time needed for each TX and so improving the operability of

blockchain.

The fundamental premise of the proposed mechanism is

that each client is able to learn the current Leader after

communicating with any orderer. The mechanism requires

minor adjustments to the communication protocol between

clients and orderers. In Hyperledger Fabric, clients submit

TXs to an orderer sending a BroadcastClient message, and

the orderer responds with a BroadcastResponse message. Both

messages are serialized based on Protobuf and then encap-

sulated in a TLS header, followed by the TCP/IP headers.

The BroadcastResponse message has a Info field that may

contain additional information about the returned status of

the TX submission, but it is not currently used. Our proposal

is that the replying orderer should enter the IP address and

TCP port of the known Leader in the Info field. In this way,

the BroadcastResponse messages delivered by each orderer

broadcast the associated connection details of the new Leader,

each time the Leader in the ordering service changes. As

follows, clients always learn about the new Leader and can

interact with it directly, with the exception of the initial TX

submissions sent after the Leader changes.

It is also important to point out the differences between the

write and read TXs. The write TXs follow the three-phase

flow architecture of Execution-Ordering-Validation, while the

read TXs are actually chaincode invocations that are executed

without being ordered. The read TXs do not modify the current

ledger state and their ordering is not required to keep the

ledgers consistent. As a result, read TXs are typically only

sent to the execution step of the three-phase flow and are not

sent to the ordering service. It is possible for a client to submit



a read TX for ordering, though this is uncommon. As follows,

our enhancements to the ordering service affect only the write

TXs or the few read TXs that are ordered. Next Section IV

sheds some light on the performance improvements brought

about by our mechanism, as well as how they are influenced

by several blockchain parameters.

IV. PERFORMANCE EVALUATION AND ANALYSIS

A. Experimental Setup

In this work, Hyperledger Fabric version 2.2.5 is used to

build a modified version of the basic blockchain network

given by the test-network example in the fabric-samples di-

rectory. Instead of the one orderer found in the original test-

network, its modified version has three orderers. As shown in

Figure 2, the deployed network is comprised of one channel

that connects two peer-organizations, org1 and org2, and an

orderer-organization. Each peer-organization consists of one

peer, while the ordering organization provides an ordering

service built by three orderers.

During the execution phase, the TXs are submitted by the

client to both peer1 and peer2 for their endorsement, and then,

they are sent to one of the three orderers. Whatever is sent by

an orderer is delayed with the use of tc, simulating the link

delays in the ordering service. TXs are sent directly to the

Leader in the direct communication, whereas TXs are sent to

Follower1 and then forwarded to the Leader in the indirect

communication. Finally, the TXs are committed by the Leader

to all peers and the client, concluding with the validation

phase.

The ordering service utilizes the Raft protocol and TLS

is enabled on every component, including the client, peers,

and orderers, to create a more realistic environment. All

components are running in separate Docker version 20.10.12

containers on a single local machine. The local machine

contains Intel(R) Core(TM) i7-8550U CPU@1.80GHz ×8,

x86 64 architecture, 8 GiB of RAM and runs Ubuntu 22.04

LTS with a disk capacity of 256 GB.

B. Hyperledger Benchmarking Tool

In the context of this work, Hyperledger Caliper (2019)

implements the client role. It is the official Hyperledger

benchmarking tool, allowing users to analyze the perfor-

mance of the blockchain networks. Based on customized use

cases, Hyperledger Caliper generates performance analyses

that include their input parameters and different performance

indicators, such as the send rate, the latency, the throughput

and resource utilization (more details below). It is configured

to submit write TXs, each of which adds a new asset to

the ledger. No read TXs are involved in the evaluation of

the proposed mechanism, since they are not affected by the

improved ordering service.
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Fig. 2. The three-phase TX flow. The red arrows represent the extra step
caused by the indirect communication with the Leader.

C. Evaluation Metrics

The following metrics offered instantly or easily generated

by the outputs of Hyperledger Caliper, and will be referred to

in the evaluation results1:

1) Successful-TXs: The number of successfully committed

TXs as a percentage of all submitted TXs.

2) Latency: The average difference in time between the

submission and the commitment of each individual TX,

measured in seconds.

3) Throughput: The rate at which TXs are committed. It

is measured in TXs per second (tps) and it is equal

to (successful+ failed TXs)/(last TX committing time−

first TX submitting time).
4) CPU-usage: The Docker CPU usage of an orderer due to

the blockchain operations.

D. Experimentation Results

Multiple series of experiments are conducted to show how

the proposed mechanism affects the performance of the mod-

ified test-network. The blockchain performance has been ex-

tensively tested with various values for parameters such as the

BatchSize, the BatchTimeout and the SendRate. The BatchSize

defines the number of TXs in a block, while BatchTimeout

describes the amount of time to wait for additional TXs

before creating a new block, after the first TX arrives. The

SendRate is the rate that Hyperledger Caliper is generating

and submitting TXs. Various link delays are also configured

with the tc assistance.

The experiments conducted are initially executed with

BatchSize equal to 1 and BatchTimeout configured to its

default value of 2 seconds. For each of those experiments, the

link delay is either 100, 200 or 300 milliseconds. SendRate

1Having in mind that when a TX is submitted, processing of that TX begins,
and when a TX is committed, processing of that TX ends.
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Fig. 3. Latency for various SendRates, under three link delays and either indirect or direct communication with the Leader.

is either an even number ranging from 2 and 18 tps or a

multiple of 10 ranging from 20 and 50 tps. The duration of

each experiment is set to 100 seconds. The rate control of

Hyperledger Caliper is configured to create TXs with fixed

rate.

For each configuration, the experiment is run under either

the direct or the indirect communication. The presented ex-

periments lead to some intriguing results. The main deduction

is that the direct communication with the Leader results to an

improvement in the average TX latency. As shown in Figure

1, the in between step to deliver the TXs to the Leader from

another orderer, causes an extra delay. Thus, the Latency of the

indirect communication will be increased by the time needed

for the communication between the two orderers. This is

evident on Figure 3, where the difference in Latency between

the direct and the indirect communications is almost equal to

the link delay, which is either 100, 200 or 300 milliseconds.

This fact is even more evident in the left plot of Figure 3,

which provides a closer view of a portion of the right plot,

zooming in a smaller range of SendRates (4, 6 and 8 tps).

In addition, as link delay and, in particular, SendRate

increase, many TXs fail, especially in the case of indirect

communication. The orderers cannot handle the increasing

load on time and the corresponding timeouts of Hyperledger

Caliper and Hyperledger Fabric expire. Specifically, Hyper-

ledger Caliper uses a timeout for bounding the time waiting for

a TX to be committed, which is equal to 60 seconds by default.

Hyperledger Fabric uses another timeout, with a default value

TABLE I
SUCCESSFUL-TXS FOR VARIOUS SENDRATES (IN TPS), LINK DELAYS (IN

MILLISECONDS), BATCHSIZE = 1 AND EITHER INDIRECT OR DIRECT

COMMUNICATION WITH THE LEADER.

SendRate

method

delay

indirect direct

100 200 300 100 200 300

20 99.9% 13.1% 6.9% 100% 74.2% 42.3%

30 20.5% 6.0% 2.9% 99.8% 35.9% 20.4%

40 10.0% 3.8% 0.3% 70.9% 24.4% 15.2%

50 1.9% 3.0% 0.0% 45.9% 18.6% 10.8%

of 7 seconds, which bounds the time an orderer waits a

response from the Leader. Table I shows the Successful-TXs

for various experiments and, obviously, direct communication

outperforms indirect, with BatchSize = 1.

Under relaxed timeouts (configured with their maximum

values), the TXs are always successful and Latency increases

with SendRate. For high SendRates, Latency is given by the

following equation,

Latency =
N

∑
n=1

( n

µ
−

n−1

λ

)

/N

=
1

λ
+

N +1

2

( 1

µ
−

1

λ

)

, ∀λ ≥ µ, (1)

where N is the number of packets sent during the experiment,

λ is the SendRate and µ is the maximum Throughput that

could be achieved. For low SendRates, where λ < µ , Latency



TABLE II
SUCCESSFUL-TXS FOR VARIOUS SENDRATES (IN TPS), INTER-ORDERER

DELAYS (IN MILLISECONDS), BATCHSIZE = 2 AND EITHER INDIRECT OR

DIRECT COMMUNICATION TO THE LEADER.

SendRate

method

delay

indirect direct

100 200 300 100 200 300

20 100% 100% 30.8% 100% 100% 100%

30 100% 26.2% 8.5% 100% 99.9% 69.1%

40 99.9% 10.5% 5.3% 100% 86.4% 44.3%

50 26.5% 6.4% 3.7% 100% 50.6% 29.3%

is equal to 1/µ . By increasing the SendRate and tracking the

increasing Throughput until an upper threshold, the rate µ is

experimentally determined to be equal to this threshold. For

higher SendRates, where λ > µ , Throughput is always equal to

µ and does not increase. For link delay equal to 100, 200 and

300 milliseconds, µ is experimentally measured to be equal to

21.1, 11.5 and 8.0 tps respectively. Defining t = 100 seconds

as the time duration of each experiment, then N = tλ and Eq. 1

becomes equivalent to the following equation,

Latency =
1

λ
+

tλ +1

2

( 1

µ
−

1

λ

)

≈
t

2

(λ

µ
−1

)

. (2)

From Eq. 2, for SendRates higher than the maximum Through-

put (λ > µ) and link delay equal to 100, 200 and 300

milliseconds, Latency is approximately given by the following

linear models: 50(λ/21.1−1)= 2.37λ −50, 50(λ/11.5−1)=
4.35λ −50 and 50(λ/8.0−1) = 6.25λ −50 respectively. Two

of these three models are depicted in Figure 3.

During all experiments, the CPU-usage for all the orderers

remain on normal levels, without being stretched. On the direct

communication with the Leader, the Leader has a higher CPU-

usage than the other orderers, due to the TX traffic being

directly forwarded to it, while on the default case the Leader

together with the orderer receiving this traffic have slightly

higher CPU-usage than the others. This indicates that the

ordering nodes are not stretched from heavy load and are able

to cope with that workload, if the default timeouts are altered

to higher values. Figure 4 portrays the CPU-usage of each

orderer for various SendRates and link delay equal to 100

milliseconds, either during the direct communication (Figure

4(a)), with the Leader having higher percentages, or during the

indirect communication (Figure 4(b)), where the Leader and

the first contacted orderer (TX receiver) have almost similar

CPU-usages and higher than the third orderer. Thus, in terms

of CPU-usage, indirect communication appears to have an

advantage in the need for load balancing and resource sharing

among the orderers, which is most likely the rationale for

choosing an orderer at random to receive TXs.

Another important conclusion obtained by the experiments

is regarding the BatchSize. As stated in [21], increasing Batch-

Size leads to higher Successful-TXs, because there are more

TXs per block and the number of blocks eventually decreases.

Moreover, as it is depicted in Figure 2, the ordering phase

is repeated once per block, thus its delay is introduced less

TABLE III
SUCCESSFUL-TXS FOR VARIOUS SENDRATES (IN TPS), INTER-ORDERER

DELAYS (IN MILLISECONDS), BATCHSIZE = 5 AND EITHER INDIRECT OR

DIRECT COMMUNICATION TO THE LEADER.

SendRate

method

delay

indirect direct

100 200 300 100 200 300

20 100% 100% 100% 100% 100% 100%

30 100% 100% 14.4% 100% 100% 100%

40 100% 21.4% 4.0% 100% 100% 90.2%

50 100% 10.6% 4.8% 100% 100% 62.1%

times during the whole experiment duration and its negative

effect to Successful-TXs is getting less and less significant.

The experimentation results presented in Table II and Table

III, indicate that for increasing BatchSize but low SendRates,

assuming that the delay is equal to e.g. 100 milliseconds,

the Successful TXs rate is 100% for both direct and indirect

communications. This makes the performance of Successful-

TXs to be irrelevant to the usage of the direct or indirect

communication method for higher BatchSizes. Consequently,

for lower BatchSizes the direct communication will have a

higher impact on Successful-TXs, compared to the indirect

one. However, the threshold between low and high BatchSizes

increases with SendRate and link delay, making the direct

communication beneficial for even higher range of BatchSizes.

V. CONCLUSIONS & FUTURE WORK

In this paper, we focused on improving the three-phase

TX flow architecture of Hyperledger Fabric, and specifically

the ordering phase. Our main contribution is to propose a

mechanism implemented on the clients and the Raft-operated

orderers of Hyperledger Fabric, in order to enable the direct

communication between the clients and the orderer that is the

Raft Leader. This way, the overhead caused by the indirect

communication with the Leader, through another intermediate

orderer, is eliminated. In order to observe the blockchain

performance with the implemented mechanism, a performance

analysis study was conducted, by configuring blockchain pa-

rameters, like BatchSize and BatchTimeout, as well as param-

eters outside of the blockchain control, like the SendRate and

the link delay between the orderers. The proposed mechanism

leads to hopeful results, improving the average TX latency and

the number of successful TXs on several occasions.

As part of future work, we will investigate the effects of

the proposed mechanism on Hyperledger Fabric by utilizing

various blockchain networks. For instance, we will incorporate

several numbers of organizations with multiple nodes and we

will increase the number of nodes in the ordering service. To

satisfy this purpose, the experimentation will rely on a testbed,

which will provide a more realistic networking environment.

Furthermore, as in [9], the blockchain network will be tested

with a much higher workload to simulate an even more

realistic setup, consisting of multiple parallel TXs. On top of

that, there is an intention to extend the study on other Raft-
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Fig. 4. The CPU-usage of the three orderers.

operated blockchain technologies and distributed systems that

can be optimized.
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