
Design and evaluation of a hierarchical SDN control
plane for 5G transport networks

Dimitris Giatsios, Kostas Choumas,
Paris Flegkas, Thanasis Korakis

School of Electrical and Computer Engineering
University of Thessaly

Joan Josep Aleixendri Cruelles, Daniel Camps Mur
Mobile and Wireless Internet Group

i2CAT Foundation

Abstract—Software-defined networking is at the root of future
5G network design. Among others, it allows for automated
network reconfiguration and network slicing support. In this
paper we present an implementation of a hierarchical control
plane in the transport network architecture envisioned by the 5G-
PICTURE project. We analyze the implementation of the slicing
mechanism at the network edge and the end-to-end path establish-
ment procedure, which involves interactions within a hierarchy
of controllers. We also evaluate the latency performance of our
control plane solution, by means of testbed experimentation.

I. INTRODUCTION

Transport networks for 5G cellular services are expected
to accommodate multiple tenants through virtualization and,
at the same time, be able to satisfy stringent QoS require-
ments, such as those related to the transport of fronthaul and
backhaul interfaces for supporting centralized and distributed
radio access network (RAN) deployments. The increased fluc-
tuations in demand patterns due to network densification call
for flexible transport architectures based on software defined
networking (SDN) [1].

5G-PICTURE project [2] is a European project under the
umbrella of the 5G-PPP initiative, focusing on challenges in
the design of 5G transport networks. Its scope is to provide a
flexible transport network consisting of multiple technologies,
including wireless and optical segments, which will facilitate
the creation of virtual and isolated overlay networks belonging
to different tenants. Its ambition is to develop an architecture
where hardware and software components are disaggregated
across the optical, wireless and compute/storage domains.

In this paper, we present a control plane architecture for
multi-tenant multi-domain 5G transport networks, as envi-
sioned by this project. Figure 1 gives an overview of this
architecture. To the best of our knowledge, our proposed
solution is the first hierarchical SDN control plane supporting
virtualization in a multi domain environment. We evaluate scal-
ability of our proposed architecture experimentally, measuring
path provisioning latency for different number of domains, and
find it to be well below 1 second for most scenarios of practical
interest for 5G transport networks.

The remainder of this paper is organized as follows. In
section II, we briefly summarize the dataplane abstraction in
our architecture. In section III, we explain the structure of our
control plane implementation, while in section IV we analyze
the interactions among different controllers in the hierarchy.
In section V we present an evaluation of the latency of our

Fig. 1: Overview of the proposed transport network
architecture and associated control plane hierarchy.

control plane solution, obtained via testbed experimentation. In
section VI we mention the most relevant work, with emphasis
in standardization efforts. Section VII concludes the paper.

II. 5G-PICTURE DATAPLANE ABSTRACTION

A. Layer 2 Overlay to support virtualization

In terms of the dataplane abstraction, the 5G-PICTURE
transport network can be seen as a virtual network, where
each tenant brings its virtual entities, namely Virtual Network
Functions (VNFs) and virtual DataPaths (vDPs). VNFs are the
end points and the vDPs are the tenant controlled datapaths.

Each virtual network is a slice of the transport network
infrastructure. A transport slice is composed of virtual Layer
2 segments where virtual entities (VNFs/vDPs) are attached.
A virtual Layer 2 segment emulates a broadcast domain and is
identified by a Layer 2 Segment Identifier (L2SID). L2SIDs are
unique system wide, meaning that L2SIDs cannot be reused
within or across slices. VNFs are identified within a slice by a
Media Access Control (MAC) address scoped to a single Layer
2 segment. vDPs contain custom network control logic defined
by the tenant, for instance they may correspond to a virtual
switch. Unlike a VNF, a vDP may have several interfaces, each
one connected to a different virtual Layer 2 segment. Each
interface of a vDP is identified again by a MAC address scoped
to the L2SID where it is attached. Note that, in our architecture,
Layer 3 forwarding between different virtual Layer 2 segments



is the responsibility of the tenant and can take place at its vDPs,
that is, only a Layer 2 overlay is provided to the tenants as a
service.

B. SDN based multi-domain transport underlay

The 5G-PICTURE architecture is deployed over a trans-
port network infrastructure consisting of domains, often
technology-specific, to which we also refer as areas. It is
composed of three main functions in the dataplane, namely
the Transport Nodes (TNs), depicted as circles in Figure 1; the
Edge Transport Nodes (ETNs), depicted as squares in Figure
1; and the Inter-Area Transport Nodes (IATNs), depicted as
triangles in Figure 1.

All transport nodes embed one major function, the For-
warding Information Base (FIB). FIB is in charge of forward-
ing packets between VNFs/vDPs, which are either colocated in
a single ETN or bounded to different ETNs. In the second case,
packets are inserted into pre-instantiated transport tunnels,
implemented with use of encapsulation. Traffic from multiple
slices can be combined into a single tunnel. The Transport
network Adaptation Function (TAF) is responsible for pushing
(or popping) the corresponding transport header before (or
after) injecting the packets into the transport network, whereby
the transport header signals at least three major pieces of
information: i) the address of the destination ETN (which
might be located in the same or in another area), ii) the
transport slice ID and iii) the tunnel ID. Tunnel IDs determine
how encapsulated packets are routed throughout the underlay.
They are area specific, meaning they generally change from
area to area, assuming that the tunnel spans multiple areas.
Transport slice IDs can be used to apply differentiated policies
depending on the slice, such as binding slice traffic to a
particular Quality of Service (Qos) class. Only ETNs/IATNs
feature a TAF, corresponding to the transport technology used
in the area where the tunnel is located.

The TNs act as regular tenant-agnostic transport nodes,
and could be instantiated by different technologies, such as
wireless or Time Shared Optical Networks (TSON). The TN
datapath forwards incoming packets according to their tunnel
ID, and optionally applies differentiated policies according to
the transport slice ID. ETNs and IATNs are interconnected
through transport tunnels, which are based on the forwarding
services of the TNs.

An ETN would typically be implemented as a software
datapath in a network hypervisor, and holds all tenant related
state thus enabling virtualization/multi-tenancy over the 5G-
PICTURE transport network. The main function of each ETN
is to host virtual entities from several tenants, as well as to offer
a datapath abstraction that connects the hosted virtual entities
to the transport network. ETN implements FIB and TAF. In
Figure 2 we see the flow table structure of an ETN, following
the OpenFlow v1.3 specifications and using Provider Backbone
Bridging (PBB) as the transport encapsulation technology.

Finally, an IATN stitches pre-defined connections between
two or more areas. Each IATN is in charge of collecting all
incoming packets from one area and forwarding them to the
appropriate tunnels of another area. For each incoming packet,
IATN first executes TAF to decide which tunnel will be used
for the forwarding of this packet (tunnel ID and possibly even

Fig. 2: ETN as a datapath.

the transport technology could be different between adjacent
areas), and then changes its tunnel ID and forwards it through
the appropriate interface completing the FIB action.

III. HIERARCHICAL CONTROL PLANE ARCHITECTURE

The control plane of 5G-PICTURE transport network is
designed based on the principles of full address space virtual-
ization and scalability. It is composed of a hierarchy of logical
controllers, as illustrated in Figure 1. The top level controller,
referred to as the Top controller, is responsible for provisioning
per tenant slices and orchestrating the required connectivity
across different areas (e.g. optical transport domain, wireless
transport domain). The Level-0 controller, also referred to
as Area controller, is responsible for the provisioning and
maintenance of transport tunnels between ETNs and IATNs
of a given area; a Level-0 controller operates at the level
of individual network elements. A set of Level-0 controllers,
which are technology-specific, are logically organized under
a Level-1 controller. The latter is technology-agnostic, is in
charge of maintaining connectivity between the corresponding
areas, and operates with a higher level of abstraction, namely
maintains state at the area level. Finally, ETNs and IATNs,
which lie at the edges of transport areas, are directly controlled
by Local Agents which are the glue between their datapaths and
the Top controller with which they interact. TNs are directly
controlled by a Level-0 controller, and do not feature such
Local Agents.

The main principle adopted in the design of the higher
layers of the 5G-PICTURE control plane is the separation
of responsibilities between the L1 controller and the Top
controller, whereby the Top controller interfaces with the
ETNs, e.g. in order to provision a new VNF, and with the
IATNs in order to stitch domains. On the other hand the L1
controller’s job is to act as an aggregator of L0 controllers,
thus interacting only with these controllers, which end up
programming the TNs of each domain.

A local ETN agent’s main responsibility is to maintain
mappings from virtual entity addresses to the remote ETNs
hosting them, whenever these entities are attached to the same
Layer 2 segment as at least one virtual entity hosted locally at
the agent’s ETN. For these remote ETNs of its interest, it also
maintains mappings to the respective tunnel IDs that must be
used for forwarding encapsulated traffic towards them. Here
we note that in cases where a tunnel traverses multiple areas,
only the first tunnel ID is stored, the one leading to the first
IATN along the route. This is in accordance with abstracting
out unnecessary information; the ETN does not have to care
about whether the destination ETN lies in the same or another
area, in fact it does not know anything about areas. The ETN
Local Agent also maintains mappings from local ports to the
respective L2SIDs, and from local virtual entity addresses to
local ports. These mappings are summarized in Table I.



A local IATN agent manages a table of mappings, which
allows the underlying IATN to forward packets across areas
using the appropriate interface, as well as to modify the tunnel
ID information, when required. This mapping can be viewed
in Table II.

TABLE I: ETN Local Agent mappings

Key Notes Value
port All local ports L2SID
{L2SID, MAC} All local virtual interfaces port
{L2SID, MAC} Remote virtual interfaces with an L2SID

locally present
hosting ETN

destination ETN ETNs hosting virtual entities attached to
at least one L2SID locally present

tunnel ID

TABLE II: IATN Local Agent mapping

Key Value
{in port, in tunnel ID} {out port, out tunnel ID}

IV. INTER-CONTROLLER COMMUNICATIONS

There are three main interactions taking place among the
controllers in the hierarchy. The Top controller communi-
cates with the ETN/IATN Local Agents, the Top controller
communicates with the L1 controller, and the L1 controller
communicates with L0 controllers.

A. Top controller - Local Agents Interaction

The Top-Local interfaces are different for the Local Agents
hosted at ETNs and those hosted at IATNs, as these types
of nodes are responsible for different functionalities. Both of
them, however, are Representational State Transfer (REST)
based interfaces.

In the case of ETNs, the basic resources made available
to the Top controller are called virtual interfaces, as an
abstraction that covers both interfaces directly connected to
a VNF, and interfaces of a virtual datapath (vDP) in a tenant’s
slice topology. These are uniquely identified by the L2SID
where they are attached and the corresponding MAC address,
scoped at the specific L2SID. Each virtual interface is hosted at
one and only one ETN at a given time (migrations are of course
allowed), and this information is a property of the virtual
interface resource. The other type of managed resource are
tunnels, also called paths, whose source node is the particular
ETN, and destination is some remote ETN. These are identified
by the (area-specific) tunnel ID attached to packets of that path
leaving the ETN, which in general is a VLAN ID field. They
feature at least one associated value, indicating the destination
ETN, but they can also optionally feature information about
the QoS guarantees provided by that path, if any, thus allowing
differentiated tunnel selection decisions for flows of special
requirements.

In the case of IATNs, the resources exposed and managed
by the Top controller are tunnel mappings between areas
attached to the IATN. The tunnels are organized by incoming
IATN port, since in our design each IATN port corresponds
to an area. They are uniquely identified by this port and the

incoming tunnel ID, while the associated properties are the
outgoing tunnel ID and the outgoing IATN port. Remember
that these translations are required to keep full independence
of different areas (domain stitching functionality). So, in fact
the IATN Local Agent is a simple thin layer acting as a proxy
between the Top controller and the IATN datapath.

Based on the interaction with the local agents of ETNs
and IATNs just described, the Top controller is responsible
for performing a number of operations. The first one is
deployment of VNFs and vDP interfaces at specific ETNs,
thereby instantiating a given tenant slice virtual topology step
by step. Another operation is to provide the functionality of
simple migration of virtual interfaces from one ETN to another.
The important thing to realize is that the Top controller makes
sure that each ETN is kept up to date about the location of
all virtual interface addresses it might need to send packets
to. This requires a global view of the location of all virtual
interfaces, and could not be addressed locally. Yet another
operation is informing the local agents of all tunnel IDs they
should be aware about. This comes as the subsequent step after
an initial step of actual path establishment, which involves the
interaction between the Top controller and L1 controller. This
interaction is analyzed in the following subsection.

B. Top - L1 and L1 - L0 controllers interactions

The interactions between Top controller and L1 controller,
as well as between L1 controller and L0 controllers, make use
of the Control Orchestration Protocol (COP), originally defined
in the Strauss project [3]. COP is a REST based protocol,
which defines a set of data models to allow REST endpoints
to offer network related services. COP has been proposed
as a research-oriented transport API, technology and vendor
independent, that permits to abstract technology specifics of a
given transport domain. It provides a multi-layer hierarchical
control plane approach using YANG and RESTconf.

The following two main services are offered by the L1
controller towards the Top controller:

• A topology dissemination service, able to retrieve
topologies from individual L0 controllers and then
aggregate them into an end to end topology.

• A path provisioning service, able to receive a path
provisioning request involving nodes in different areas
and resolve it into separate path requests for each of
the involved areas. If there are multiple paths between
two areas, the L1 controller performs routing at the
area level.

In addition, the L0 controller offers the same two services
towards the L1 controller:

• A topology dissemination service, in which the L0
controller exports the topology specific to its domain
in COP format. We note that the L0 controller might
choose to report only a summarized version of its
topology, where the only critical information to be
exposed to the L1 controller are the nodes connecting
to an ETN or an IATN.

• A path provisioning service, whereby the L0 controller
receives a request to connect to TNs under its control,



and the L0 controller responds with the corresponding
tunnel identifiers.

The COP service-topology data model consists of a list of
nodes, representing network devices, and edges, representing
network links. In COP, nodes embed multiple edge-ends,
representing a port or an interface, and edges refer to the nodes
at each side of the link.

Since the L1 controller only interacts with the L0 con-
trollers, not ETNs or IATNs, the COP topology will only report
TNs in its list of nodes. However, the Top controller needs to
be able to resolve an ETN or IATN into a TN in order to
issue a path request to the L1 controller. Since the mapping
between ETN/IATNs and TNs is expected to be something
fairly static, we opt to manually provision the L1 controller
with this information. In particular, we enable an additional
REST endpoint in the L1 controller that allows to specify
information about IATNs and ETNs connecting to one of the
L0 domains under the control of this L1 controller. Then, the
L1 controller exposes the IATN/ETN information as a COP
edge. This information is sufficient for the Top controller to
match ETN/IATNs with TNs and issue a path request.

In particular, the L1 controller maps 5G-XHaul functions
into COP topology objects in the following manner:

Node TNA

Regular edge TNA : PortA→ TNB : PortB
IATN edge IATNA : PortA→ IATNB : PortB
ETN edge ETNA : PortA

C. End to end path establishment

The basic operation that requires interactions among all
controllers in the hierarchy is that of an end-to-end path
establishment between two ETNs that are located in different
areas. The time sequence of interactions required for this
procedure is summarized in Figure 3 for an example with two
adjacent areas.

Fig. 3: Interactions among controllers for end to end path
establishment.

At step 1, the Top controller sends a request to the L1
controller, using COP/REST for establishing a path between
two ETNs. The L1 controller examines the request and finds
out that the path must traverse two adjacent areas. It then
breaks the original request into two sub-requests, intended
for the L0 controllers of these areas. Essentially, these sub-
requests, sent in parallel via COP/REST at step 2, are for

Fig. 4: Experiment setup for latency evaluation.

provisioning of connections between each ETN and the IATN
stitching these areas. The L0 controllers build the connections
by programming the required flows at their subordinate TNs
during step 3, using OpenFlow, NETconf or another standard
protocol. At steps 4 and 5, confirmation of path establishment
travels from the L0 controllers to the L1 controller, and from
there to the Top controller. The procedure is not yet finished,
because the ETNs and the IATN need to be instructed as well.
Therefore, at step 6 and using the respective REST interfaces,
the Top controller informs the ETN Local Agents of the tunnel
IDs they must associate to the remote ETN, and the IATN
Local Agent of the tunnel translation it must perform. These
messages are sent at step 6. At step 7, the Local Agents install
the required flows into the underlying datapaths, typically
using OpenFlow. Finally, at step 8, the Local Agents send
confirmations to the Top controller. After this point, the tunnel
is ready for use.

V. EXPERIMENTAL EVALUATION OF CONTROL PLANE
LATENCY

In this section we evaluate the performance of the 5G-
PICTURE hierarchical control plane looking at the time re-
quired to provision an end-to-end tunnel between two separate
ETNs, involving multiple control plane areas. To carry out
this evaluation we have conducted repeated experiments at
the NITOS testbed [4], where we implemented the topology
depicted in Figure 4, with OpenVSwitch being used for the
data plane.

The topology consists of five Ethernet based areas con-
nected in a chain by IATNs. The 5G-PICTURE control plane
is implemented in a set of Vitual Machines, including the five
L0 controllers, the L1 controller, the Top controller, and Local
Agents for all ETNs and IATNs in the topology. All VMs
are hosted in NITOS physical nodes, and are connected to
the same local testbed network. Each area was emulated by a
Mininet instance running at the same VM as the respective L0
controller.

Using this setup we carry out a set of measurements to
estimate the overall time required to establish an end-to-end
tunnel. In this experiment, we examine the establishment of a
bidirectional connection, which is very usual in practice, but
our solution also supports unidirectional connections.

The overall time can be broken into two sequential com-
ponents. The first component involves the Top controller’s



request to the L1 controller for the latter to provision an end-to-
end bidirectional path between two given ETNs. The response
of the L1 controller contains, among other information, the
tunnel IDs to be used in each direction in every area used by
the path. The second component involves the Top controller’s
instructions to the Local Agents of the two ETNs and of
the IATNs traversed by the returned path. This component
must strictly follow the first one, as the Top controller must
instruct the Local Agents of the specific tunnel IDs to be
used, and also it must be aware of which IATNs need to be
updated. Therefore, we take separate measurements for the two
components.

We are particularly interested in examining how our solu-
tion behaves for an increasing number of areas between the two
ETNs, as we want to study the scalability of our solution. Our
topology was designed to allow this. By keeping one of the two
ETNs fixed, specifically ETNA in the first area, and changing
the other ETN to be ETNB , ETNC , ETND, ETNE and
ETNF , we essentially examine the scenarios where the two
ETNs are in the same area, or lie at the edges of an increasing
number of areas, from 2 to 5, connected in chain.

For each of the five scenarios, we execute 25 different
tests. The resulting cumulative distribution functions (CDFs)
of the latencies for the two components of path establishment
are reported respectively in Figure 5 and Figure 6. For both
components, we observe a linear increase of the latency with
the number of areas between the ETNs. This makes sense. The
L1 controller must partition the request and distribute it to a
respective number of L0 controllers, which in turn need some
time to program the TNs under their control. Increasing the
number of areas also means the Top controller must instruct
an increasing number of IATNs to install rules for tunnel ID
translations. For each added area, the increase is approximately
50ms for the first component and 70ms for the second, i.e. a
total of approximately 120ms on the average.

We have seen how the path establishment latency scales
with the increasing number of areas. Yet another latency
scaling result of interest is how the size of each area affects
the latency. Specifically, how it is affected by the number of
TNs within each area along the end-to-end path. We have
examined this scenario using a fixed number of areas. Our
results indicated that there was no significant fluctuation in the
latency of a L0 controller for provisioning the path in its area
with respect to the number of TNs involved. This is because
the L0 controller has all the topology information allocated in
its memory and can instantiate the paths using multiple threads.

Note that in the experimental evaluation above, all con-
trollers were hosted at VMs connected to the same local
network, therefore propagation delays were quite low. The TNs
were also in the same local network as the respective L0 con-
trollers. Therefore, for implementations where the architectural
elements are distributed over a wide area, we should add the
respective propagation delays to the above results, wherever
they apply. These can be easily measured with the ping
utility. As an example, we mention preliminary experimental
results (without scaling) we obtained in [5], where areas and
controllers were split between two sites, located at University
of Thessaly (UTH) and i2CAT. Specifically, one area per site
was deployed, the Top controller was running at UTH, the L1
and L0 controllers at i2CAT, the IATN Local Agent at UTH,

Fig. 5: Scaling of L1 controller response latency CDFs with
increasing number of areas in provisioned path.

Fig. 6: Scaling of total response time of Local Agents of
ETNs and IATNs in provisioned path.

and the ETN Agents at the site of the area where they were
attached to. Through ping, an additional average round trip
latency of 50 ms was measured between the two sites, which
aggravated the measured control plane latency. The CDF of the
overall path provisioning time measured in this experiment can
be seen in Figure 7.

Summarizing, the key observation to make is that the over-
all connection establishment time is below 1 second, which is
negligible compared to service provisioning time in current IP
networks, which often require manual intervention. We also
point out that, for 5G transport networks, ETNs are expected
to be separated by no more than a few areas, for instance due to
data plane latency concerns. For two areas, expected latency
is less than 500ms. Finally, we believe we can significantly
reduce the path establishment latency through optimization of
the software implementations of our controllers, by further
employing multi-threading wherever possible, which is part
of our ongoing work.



Fig. 7: CDF of overall delay for path provisioning in
two-area experiment with areas and controllers distributed at

two remote sites.

VI. RELATED WORK

In this section we describe related work in the areas of
network virtualization, SDN architectures applied to transport
networks, and compute and network integration.

Network virtualization solutions based on overlays have
seen a large adoption in data-center environments, where a
common compute infrastructure, connected with an underlay
Layer 2 or Layer 3 network, is used to support multi-tenant
services. The most representative solution is Virtual Extensible
LAN (VXLAN), which is an overlay technology providing
virtual Layer 2 networks over a Layer 3 infrastructure, tunnel-
ing VXLAN packets over UDP/IP. Initial VXLAN standards
[6] implemented an in-band flood-and-learn scheme, like a
traditional Ethernet bridge, without an explicit control plane.
In particular, each virtual Layer 2 network is associated with a
multicast group, and all servers hosting VMs attached to that
virtual network are subscribed to that group. A drawback of
flood-and-learn schemes is that they introduce too much broad-
cast traffic, due to protocols like ARP. To enhance VXLAN
scalability, the Multiprotocol Border Gateway Protocol (MP-
BGP) Ethernet Virtual Private Network (EVPN) has been
defined by the IETF as a standards-complying control plane
for VXLAN. In EVPN, MP-BGP is used to disseminate the
bindings between the MAC addresses of a particular virtual
Layer 2 network and the corresponding IP end-point of the
underlay. This is in contrast to the 5G-PICTURE virtualization
solution where a Layer 2 overlay is used in coordination with
an SDN controlled Layer 2 underlay.

Multi-domain SDN control planes for transport networks
have also been a topic of intense research in the last years. The
Control Orchestration Protocol (COP) first proposed in [7] was
one of the first approaches to propose a generic interface to
allow inter-controller coordination in hierarchical SDN control
planes. The work in COP evolved into the definition of the
ONF’s Transport API (T-API) [8], which offers a true multi-
vendor interface, with extensions to support optical and mi-
crowave equipment. The inter-controller architecture proposed
in this paper is based on extensions of COP, but can be easily

ported to T-API. It is worth noticing though that neither COP
nor T-API natively support network virtualization, as it is done
by 5G-PICTURE.

Finally, some initial work on SDN/NFV integration for
integrated network and compute infrastructures is reported
in [9] for mobile networks, and in [10] for 5G slicing.
Although this paper has not explicitly discussed network-
compute integration, our proposed solution can be integrated
in an NFV MANO system, by integrating an ETN endpoint
in the hypervisor of each compute node, and integrating the
north-bound interface of the 5G-PICTURE Top controller with
the VIM network controller (e.g. neutron for OpenStack).

VII. CONCLUSION

We presented an implementation for the basic function-
alities of a hierarchical control plane in the 5G-PICTURE
architecture for 5G transport networks. Our design targets in
providing scalability and efficiency. Future extensions of our
work will focus on QoS support at the transport nodes and its
implications in designing efficient policies.

ACKNOWLEDGMENT

This work has been financially supported by the EU
Horizon 2020 project 5G-PICTURE under grant agreement No
762057. The European Union and its agencies are not liable
or otherwise responsible for the contents of this document; its
content reflects the view of its authors only.

REFERENCES

[1] “5GPPP architecture working group, View on 5G architecture,”
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-
Architecture-WP-For-public-consultation.pdf.

[2] “5G-PICTURE project,” https://www.5g-picture-project.eu/.
[3] “Straus project, deliverable 3.2: Preliminary report on the building

blocks for the network virtualization, openflow control and sdn orches-
trator,” June 2015.

[4] “NITOS testbed,” https://nitlab.inf.uth.gr/NITlab/nitos.
[5] “5G-Xhaul project, deliverable 3.3: 5g-xhaul algorithms and services

design and evaluation,” August 2018.
[6] M. M. et al., “ Virtual eXtensible Local Area Network (VXLAN): A

Framework for Overlaying Virtualized Layer 2 Networks over Layer
3 Networks,” Internet Requests for Comments, RFC Editor, RFC
7348, August 2014. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc7348.txt

[7] R. Muñoz, A. Mayoral, R. Vilalta, R. Casellas, R. Martı́nez, and
V. López, “The need for a transport API in 5G networks: The control
orchestration protocol,” in Optical Fiber Communications Conference
and Exhibition (OFC), 2016. IEEE, 2016, pp. 1–3.

[8] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, “Emerging transport sdn
architecture and use cases,” IEEE Communications Magazine, vol. 54,
no. 10, pp. 116–121, 2016.

[9] V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, “Sdn/nfv-
based mobile packet core network architectures: A survey,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1567–1602,
2017.

[10] A. Mayoral, R. Vilalta, R. Muñoz, R. Casellas, R. Martı́nez, and
V. López, “Cascading of tenant sdn and cloud controllers for 5g
network slicing using transport api and openstack api,” in Optical Fiber
Communications Conference and Exhibition (OFC), 2017. IEEE, 2017,
pp. 1–3.


