
On the Implementation of a Cross-Layer SDN
Architecture for 802.11 MANETs

Ilias Syrigos
Gridnet SA

Volos, Greece
is@gridnet.gr

Ippokratis Koukoulis
Gridnet SA

Volos, Greece
ik@gridnet.gr

Apostolis Prassas
Gridnet SA

Volos, Greece
ap@gridnet.gr

Kostas Choumas
Gridnet SA

Volos, Greece
kc@gridnet.gr

Thanasis Korakis
University Of Thessaly

Volos, Greece
korakis@uth.gr

Abstract—The adoption of the Software Defined Networking
(SDN) paradigm is aggressively expanding from traditional
datacenter networks to 5G and IoT deployments due to its
flexibility in network management and routing. Mobile Ad-
Hoc Networks (MANETs), with their unique characteristics and
requirements stemming from the mobility and volatile wireless
medium conditions, have not yet realized the benefits of the SDN
approach. Adoption has been hampered by technical challenges
and the contradiction between the centralized concept of SDN
and the distributed one of traditional MANET routing schemes.
In this paper, we present our implementation of a fully-fledged
SDN framework, which attempts to bridge the gap by combining
the benefits of both worlds. Our developed prototype integrates
with 802.11 Ad-Hoc networks and offers a) fault tolerance for the
SDN controller by recovering from failures with the (re)-election
of a new controller, b) dynamic network topology discovery,
and c) a cross-layer approach in routing based on 802.11 MAC
layer statistics that more accurately characterize link quality and
capacity. We validated the applicability and performance benefits
of our method by evaluating our proposed SDN architecture in
a proof-of-concept scenario.

Index Terms—SDN networks, MANET, resilience, cross-layer,
Raft, 802.11

I. INTRODUCTION

Software Defined Networking (SDN) is an emerging, evolu-
tionary paradigm that provides dynamic and efficient network
configuration and management by decoupling the control
plane from the data plane. This allows for a holistic and
centralized view of the network, upon which the SDN con-
troller makes intelligent routing and forwarding decisions. It
enables the execution of Quality of Service (QoS) policies,
the deployment of new, complicated and sophisticated routing
protocols, and the administration of heterogeneous switching
equipment without the need for additional hardware or manual
configuration. SDN’s flexibility in traffic management and
efficiency in network operation have encouraged both industry
and academia to swiftly adopt it as the dominant networking
paradigm. According to [1], the SDN market is anticipated to
witness a substantial growth from USD 13.7 billion in 2020
to USD 32.7 billion by 2025, at a Compound Annual Growth
Rate (CAGR) of 19% during this period.

However, its adoption in wireless networks and, more
specifically, in Mobile Ad Hoc Networks (MANETs) is not
prevalent due to a number of unresolved research challenges,
despite extensive academic study. The majority of obstacles

originate from the dynamic and volatile wireless environment
caused by the unpredictable mobility, arrival, and departure
of wireless nodes, as well as the inherent conflict between
the centralized structure of SDN networks and the distributed
nature of MANETs. The SDN controller, the central entity,
is susceptible to failures or disconnections that render the
entire network inoperable. In addition, the dynamic movement
of network nodes makes establishing connectivity channels
between them and the controller a difficult puzzle to solve.
These challenges go beyond the realm of research and are
manifested in the form of technical difficulties and trade-offs
that must be addressed for delivering a usable and efficient
solution.

Traditional MANET routing protocols, such as Optimized
Link State Routing Protocol (OLSR) [2], are able to adapt
to dynamic network environment changes, exhibiting an ac-
ceptable performance, by leveraging their distributed nature
to discover neighboring nodes and forward network traffic.
However, the benefits of such protocols are accompanied
by higher network overhead due to message exchanges and
lengthy convergence times, which hinder performance in low-
capacity and sparse networks, as well as in scaled and complex
mesh networks. Their primary limitation, though, is the lack
of a global network perspective with data coming from the
various layers of the network stack, as well as the inability
to act on this data with the application of intelligent policies,
due to their lack of programmability.

This paper presents and evaluates our design and imple-
mentation of a fully-fledged SDN framework for MANET
networks, which attempts to bridge the gap between dis-
tributed MANET protocols and centralized SDN approaches
by adopting their strengths and overcoming their constraints.
Specifically, our contributions can be summed up as:

• Definition and development of an in-band SDN architec-
ture in which the connection to the controller, part of the
MANET, is also SDN-based.

• Provision of fault-tolerance and resilience in the event
of controller failure or out-of-range movement, with
automatic (re-)election of a new controller.

• Development of a distributed, OLSR-like topology dis-
covery mechanism that permits dynamic network com-
position and quick reaction to network changes.

• Integration with the wireless 802.11 protocol via tunnel-



ing and the development of agents that extract MAC/PHY
layer statistics from the wireless card driver.

• Implementation of an adaptive forwarding process that is
aware of the wireless network’s utilization.

This is, to the best of our knowledge, the first attempt to
develop a fully operational SDN framework that addresses the
majority of MANET challenges and may be regarded as a
competitive alternative to routing protocols such as OLSR.

The remaining sections of this paper are structured as
follows: The section II provides a summary of relevant earlier
work on SDN approaches for MANETs. Section III describes
in detail each of our contributions while presenting the overall
architecture of our developed framework. In section IV, a
proof-of-concept use case deployed on a wireless testbed and
a mobility scenario deployed in an emulation environment
are used to evaluate the framework. Section V, concludes the
paper by reviewing our proposed scheme and findings and
identifying future research directions.

II. RELATED WORK

Originally, the SDN concept has emerged for providing flex-
ibility and dynamic management for the centralized networks
of datacenters and mobile networks’ backhauls. Nevertheless,
several approaches have explored the integration of SDN
with wireless networks, particularly wireless mesh networks.
Prior work in [3] provides a hybrid framework that employs
OpenFlow to route data traffic, while it uses OLSR for routing
OpenFlow control traffic and data traffic in the event of
an SDN controller failure. The evaluation was conducted
within an emulation environment. Additionally, the work in
[4] represents a deployment that allows for automatic selection
of an SDN controller through an election procedure that
then imposes routing rules with a higher priority than those
of the existing routing protocol (Babel) used for providing
connectivity between the nodes.

The authors in [5], [6] propose a flexible SDN architecture
in which nodes use backup paths discovered in a distributed
manner, when there is detection of failure of the primary path
installed by the SDN controller. Although this approach can
provide quick reaction to network changes, it is not able to
leverage a centralized network overview for performing op-
timal routing decisions. Another SDN-to-MANET integration
effort is presented in [7] that exhibits quick reaction times
to network volatility. However, the approach is based on the
assumption that the nodes possess two wireless interfaces,
with the one being used for the communication with the
controller, which is assumed to be always in direct connection.
The works in [8], [9] provide the foundation for QoS in
SDN routing, the former by prioritizing traffic flows and the
latter by considering the MANET’s bandwidth utilization in
taking routing decisions, although both are assuming a direct,
always-available connection with a central entity responsible
for managing the SDN network.

Our implementation, outlined in this paper, distinguishes
itself from prior work in that, to the best of our knowledge, it
is the first to offer a fully-fledged solution that addresses all

aspects and issues of the integration of SDN into MANETs.
It ensures deployment applicability by establishing and devel-
oping an in-band architecture requiring a single interface for
both the control and data planes. In addition, the automatic
election of the SDN controller improves robustness and elim-
inates single points of failure. Finally, and most importantly,
it follows a cross-layer approach, incorporating MAC layer
statistics for the accurate estimation of link capacities and the
QoS routing of flows.

III. PROPOSED SDN SCHEME

In this section we describe the entire SDN framework
we designed and developed, providing an overview of the
architecture along with details for each distinct process and
functionality.

A. Overall Design

LC
LC

LC LC

upgraded

LC

MC

LC
LC LC

LCLC
MC

data plane
control plane

controller-to-controller
Raft

controller-to-switch
OpenFlow

GENEVE

GENEVE

Fig. 1. Overall Architecture

A high-level description of our fault-tolerant SDN frame-
work is depicted in Figure 1, where each node in the MANET
network is running an SDN Local Controller (LC) application
in parallel with a virtual switch, based in Open vSwitch (OVS)
[10]. In general, in the SDN concept there are two options for
the implementation of the control plane, which is the means
of connection between the controller(s) and the switches. The
first, the out-of-band control plane, connects the controller(s)
to the switches via a separate network. The second, the in-band
control plane, utilizes the same network for both control and
data traffic. Although it is technically challenging, we opted
for the second option as it offers us the ability to completely
control the network in an SDN manner and it is applicable
to devices with a single wireless interface. We provide more
details on how we handle the SDN control plane establishment
with the assistance of LCs and the routing of control messages
in subsection III-E.

Furthermore, in order to ensure reliability and fault tolerance
for our system, we have employed the Raft Consensus Algo-
rithm [11] as the distributed protocol for the coordination of



controller-to-controller communication between LCs and the
election of a suitable Master Controller (MC), which is the
node responsible for managing the SDN network of a MANET
cluster and applying flow rules to the virtual switches, via
OpenFlow, the de-facto controller-to-switch communication
protocol. Ultimately, the entire SDN architecture resides on
top of an 802.11 Ad-Hoc network, with which is seamlessly
integrated to enable efficient control and intelligent routing.

B. Integration with IEEE 802.11

For the deployment of our SDN framework, the integration
with the underlying wireless communication protocol was
necessary. Although the framework is portable and directly
applicable to any wireless infrastructure, we focused on 802.11
protocol (WiFi), as it is the prevalent in MANETs. In our
setup, the wireless nodes are configured as Ad-Hoc (IBSS), ca-
pable of communicating directly with their one-hop neighbors.
As described in [12], IEEE 802.11 uses a different addressing
scheme than the traditional 802.3 standard, making integration
with a virtual switch, specifically with OVS, more challenging.
Currently, only IEEE 802.11 interfaces configured in 4-address
mode can be directly connected to OVS. However, this mode
cannot be configured when the wireless interface is in Ad-
Hoc mode, as the third address of the MAC header is reserved
for use as the BSSID address by the standard. To overcome
this challenge, we used a strategy similar to that described
in [13]. We employed GENEVE tunnels to create a virtual
point-to-point link between two nodes and attached them as
ports in OVS, thus making the use of IEEE 802.11 completely
transparent for the virtual switch.

Besides interfacing with OVS, our cross-layer SDN archi-
tecture integrates with the 802.11 MAC layer for performing
routing of traffic by leveraging MAC/PHY layer statistics that
are exported by the drivers of the wireless cards such as the
Packet Delivery Ratio (PDR), the TX PHY bitrate as well as
the airtime utilization. The SDN controller is able, through
our implemented extension of OVS and a standard OpenFlow
procedure, to centrally collect them and gain an accurate
estimation of the quality of the wireless links between nodes.
Subsection III-F offer a more thorough analysis.

C. Fault Tolerance

The SDN Controller is the heart of the SDN network and
the most critical component. As such, it is the network’s
single point of failure. In a MANET environment, where
the Controller is mobile and moves out of the range of the
switches/nodes, the network becomes dysfunctional, unable
to establish new communication paths, adapt to changes in
the wireless environment, or maintain centralized decision
control in general. To address this challenge, we designed and
developed a fault-tolerant SDN network in which each node
can immediately assume the role of the MC when necessary.
To do this, each node in the network, as mentioned earlier, runs
an LC process concurrently with an OVS instance, which is
configured to connect with all other LCs/nodes in the network.
By exploiting OpenFlow’s capability of assigning different

responsibilities to controllers, we are able to avoid conflicts
caused by concurrent and potentially contradictory flow entry
installations in switches and coordinate the coexistence of nu-
merous controllers appropriately. According to the OpenFlow
specification 1.3.1 [14], a controller can operate in one of the
following roles:

• Equal: This is the controller’s default role. The controller
has complete access to the switch and is equivalent to
other controllers in the same role.

• Slave: A Slave controller has access to the switch in a
read-only mode. The controller is prohibited from issuing
controller-to-switch commands.

• Master: The Master controller has complete read/write ac-
cess to the switch. At any given time, only one controller
can be the Master.

Thus, while every switch in the network runs an LC process,
only a single of them can be upgraded to the MC role at any
given moment, able to control and apply flow rules to the rest,
therefore retaining SDN’s centralized nature. This controller is
configured as the Master in the OvS instances of the network.
The rest are configured as Slaves for all OVS instances apart
the ones that are collocated, for which they are configured as
Equals.

This strategy eliminates the single point of failure providing
robustness and resilience to the network. In our implemen-
tation, the employment of Raft election scheme is exploited
for the nomination of the MC by automatically declaring the
single leader, in Raft terminology, of a cluster of nodes as the
MC of the SDN network. Specifically, the controller of the
Raft-elected leader node communicates its intention to become
MC with the use of OpenFlow Role Request messages.

There are two parameters that are controlling the behavior
of the Raft algorithm, and therefore the controller-to-controller
communication of the SDN network: a) the heartbeat interval
and b) the election timeout. Heartbeat interval (hbeat interval)
defines the frequency with which the leader will notify follow-
ers that it is still the leader. Election timeout (election timeout)
is how long a follower node will go without hearing a heartbeat
before attempting to become leader itself. Both should be
tuned appropriately so that leadership is transferred rapidly
in case of leader failure or disconnection and at the same time
unnecessary elections and extra overhead are avoided.

D. Topology Discovery

Every MANET protocol’s core functionality is neighbor
discovery, as any node must be aware of its one-hop neighbors
in order to establish multi-hop connectivity with any other
node in the network. This is no different in our SDN case.
However, due to the centralized nature of the SDN network,
the controller, and specifically in our implementation the MC
must be aware of the entire network topology. A common
procedure in SDN wired networks, but also in wireless [15],
for topology discovery, is through centralized circulation of
LLDP packets between the controller and the switches and
the subsequent building of a network graph.



This centralized approach comes with two major disad-
vantages. The first is that an LLDP packet originating from
an SDN controller may traverse the entire MANET network
to arrive back to the controller as an OpenFlow Packet In
message, for the discovery of just a single link. Accounting the
fact that this process must be repeated for every node and every
port of the node’s virtual switch, periodically, it is evident that
the overhead in the network grows significantly as the size of
the MANET network grows. The second is that having only
a single SDN controller aware of the network’s topology (i.e.
MC for our case), there is a risk of losing connectivity during
elections or during bootstrapping of the system. In order to
overcome these challenges, we implemented a more distributed
approach, similar to the one of OLSR.

In specific, the collocated LC of each node, operating in
Equal mode, instructs the switch to broadcast special messages
through the broadcast GENEVE tunnel we use to avoid
overhead of forwarding broadcast messages through individual
tunnels. Such messages include the Hello messages that are
used for discovering neighboring links, and Topology Control
(TC) messages that are used to discover multi-hop paths, both
encapsulated in an LLDP packet as separate sections. The
Hello message section of the LLDP packet consists of the
originator node identifier and a bit that indicates if the message
has been rebroadcasted. The TC message section contains the
originator node’s incoming one-hop links which are learned
from previous Hello messages received.

The LLDP packets containing the Hello and TC sections
are broadcasted every lldp period ms and are rebroadcasted
by all nodes using sequence numbers in order to avoid loops.
Every node has a local topology database where it stores the
links that learns through LLDP exchanges. In case a new TC
message arrives that it does not contain a previously stored
link, then this link is deleted from the database. Accordingly,
the record of a neighboring link in the database from where the
node does not receive a Hello message within timeout period
seconds is also deleted. For non-neighboring links, if no TC
message is received after timeout period seconds from the
last TC message received from the same originator, then all
links stored in the database associated with this originator
are deleted as well. Therefore, with this distributed approach,
every node and its respective collocated LC is able to construct
a network graph with the discovered nodes (neighboring or
not) allowing network connectivity during network bootstrap
or MC election.

E. Flow Entries Management

Our SDN framework must effectively handle a number
of difficult special circumstances that arise throughout the
operation of the network lifecycle. First and foremost is
the management of the network bootstrap that will allow
the discovery and connection between the nodes and the
non-collocated LCs. As was already mentioned, the switch’s
collocated LC manages the switch in tandem with the MC,
when operating in Equal mode. The LC uses the network
graph learned from the topology discovery to setup flows in

its collocated switch to route control traffic. These flows are
also used to route data plane traffic when an MC has not yet
been elected, or if the LC has not been connected (or lost its
connection) to the elected MC, to service data traffic in the
absence of an MC. As a result, even if they only handle their
switch, the collocated LCs are able to create a network graph
and coordinate the forwarding of packets, both control and
data, to the discovered network using the discovery mechanism
described in the preceding subsection. This process is carried
out concurrently by all LCs during network startup, and once
the absolute majority of the cluster has been discovered and
connected, the election of an MC can be completed and the
elected controller will then take control of managing data flows
for the whole network.

The controller, either operating as an MC or collocated
LC, instructs the switches to forward packets by installing
flow rules based on the Dijkstra shortest path found on the
graph that has built and annotated with appropriate weights.
The process of calculating the weights will be analysed in
the following subsection. Each flow rule installed has an
idle timeout, meaning that if the flow remains inactive for
a period larger than the timeout, the flow is deleted and
the controller is notified. This allows switches to inquire
for new (perhaps better) paths, when the flow is activated
again. Furthermore, the installed flow rules on the switches
are also stored internally by the controller process, in order
to be able to manage them in case the graph is altered by a
network event such as a new link discovered or an existing
link removed. In more detail, a separate thread of the process,
periodically inspects the stored flow entries and queries the
graph for better paths, and when one is found, new rules are
installed on the involved switches via Flow Mod messages.
This enables data traffic to be always forwarded through
the links providing the best performance. Both idle timeout
and period of updating the flows are apt to judgement and
configuration of the network administrator, as the associated
performance benefits are dependent to the volatility and size
of the network.

Furthermore, when an MC, during Packet In handling, is
unable to retrieve a path towards a destination, then it removes
the respective flow entry for this destination at the switch of
the source node that generated the data packet (if it exists).
This last condition refers to the case, when a packet leaves its
source and arrives at an intermediate node, between source and
destination, which inquires the MC via a Packet In message.
In this case, where the MC is unable to forward the packet,
the flow entry at the source should be removed, otherwise the
packets will keep following a path with dead end.

F. Cross-layer SDN-MAC integration

A significant advantage that an SDN network can provide
us over the use of traditional MANET routing protocols, is
the ability of the SDN Controller to perform intelligent routing
decisions based on the knowledge that collects and stores from
across the network nodes and between the various layers of the
network stack. To that end, we have enabled the integration



between the SDN control plane and the 802.11 MAC layer,
by implementing the mechanisms that allow the controller to
acquire data and statistics from the open-source driver of the
wireless card of each node, following a similar approach with
our previous works [16], [17]. These statistics are leveraged by
the controller in order to define the weights, for the links in the
graph, which are accurately characterizing the links’ available
capacity. These weights are calculated every τ period using
the equations below, where r is the median of the PHY rates
reported by the driver for the same period.

In the CSMA/CA based MAC layer of 802.11 where
multiple stations are competing for the access to the wireless
medium, there are several factors that influence the actual
throughput performance of a transmitting station and these are
also related with the assesment of a link’s available capacity.
For a time interval [t0, t0+τ ] the available capacity AC(t0, τ)
of a link between a source node s and the directly connected
destination node d is estimated as follows

ACsd(t0, τ) =
1

τ

∫ t0+τ

t0

PDR(t)× (1− u(t))×C(r)dt. (1)

From Equation 1 we can observe that the available capacity
of a link for a specific time interval depends on the calculated
Packet Delivery Ratio PDR(t), the fraction of time u(t) during
which the medium is sensed as busy (airtime utilization) and
the maximum link capacity C(r). It is worth to note here,
that u(t) refers not only to the proportion of time required
for the transmission of the traffic of the network’s nodes, but
also accounts for the interference from external networks or
devices. The C(r) for an 802.11 link (n version and above),
assuming no losses and a simplified model based on the
analysis in [18], is in turn calculated as follows

C(r) =
maxAMPDU(r)× L

TxDelay(r)
, (2)

where maxAMPDU(r) is the maximum number of frames
allowed into an AMPDU frame for a PHY rate r, and L
refers to the UDP payload carried by a single IP packet. The
TxDelay corresponds to the transmission delay of the AMPDU
frame for the PHY rate in use, which also involves the TWIFI
delay caused by management and control frames along with
the backoff delay, all associated with the standard process of an
802.11 transmission, and which equals TWIFI = 249µs, when
CTS, RTS and ACK are transmitted with 6 Mbits/s PHY rate

TxDelay(r) = TWIFI + TDATA(r), (3)

where TDATA(r) can be approximately defined as

TDATA(r) = TPH +
maxAMPDU(r)× (SMAC + S)

r
, (4)

where TPH = 20µs is the transmission delay of the PHY
header, SMAC is the size of the MAC header and S is the
size of a single frame.

In order to avoid unnecessary complexity by introducing
bi-directional edges in the graph, we decided to denote as
the available capacity for a link, the minimum between those

estimated for each of the link’s end points. Therefore, we
annotate each edge between two directly connected nodes, s
and d in the graph, with a weight wsd, calculated as

wsd =
1

min(ACsd, ACds)
(5)

Consequently, when a Packet In for a new flow arrives,
the controller performs shortest path computation in order to
establish the forwarding path of the flow. However, during
the process of periodically updating the flows, the controller
inspects every link’s available capacity in order to avoid con-
gested links. In such links, where AC is under a pre-defined
threshold thr, the controller rearranges the flows, starting with
the one, f , with the less consumed bandwidth bwf,sd(t0, τ), in
order to bring AC over the thr again. For each flow f and for
the given time interval [t0, t0 + τ ], the consuming bandwidth
for a specific link s → d is approximated by

bwf,sd(t0, τ) =
TxBytesf (t0, τ)

r
, (6)

where TxBytesf (t0, τ) are the transmitted bytes for flow f as
reported by the switch.

The aforementioned parameters for the estimation of links’
available capacities and therefore the edges’ weights, as well
as consumed bandwidths, are polled and collected from the
open-source driver of the wireless card by our implemented
agent, which is an extension of OvS, responsible for com-
municating these statistics to the MC and to the collocated
LC. The interval, over which the agent inquires the driver
is called l2 sample period and can be configured by the
network administrator. Measuring PDR and airtime utilization
for the specified interval is straightforward. The exchange of
the statistics is still OpenFlow compatible as we are utiliz-
ing the OpenFlow Experimenter messages that are defined
by the standard and which allow us to pass arbitrary data.
Furthermore, the actual transmitted bytes for each flow that
are reported by the switches are encapsulated in OpenFlow
Flow Stats messages.

IV. EVALUATION

In order to test and evaluate our developed framework, we
deployed it on a realistic testbed environment and assessed its
performance under a particular, but commonly encountered
scenario. We focused on routing decisions in the presence
of utilized links, which allowed us to further illustrate the
rationale and performance benefits of our cross-layer SDN
approach.

A. Testbed Setup

Our testbed comprises of six wireless nodes, which are es-
sentially commercial off-the-shelf computers running Ubuntu
18.04 and equipped with an 802.11ac-capable wireless card.
The card’s chipset is QCA6174, and the corresponding open-
source driver is ath10k. In addition, we have installed our
framework, which consists of numerous software modules and
scripts. We have specifically deployed our extended version
of OVS, based on version 2.15.90, our expanded version of



TABLE I
EXPERIMENT PARAMETERS

Parameter Value
lldp period 2 s

timeout period 20 s
hbeat interval 100 ms

election timeout 1000 ms
l2 sample period 5 s

Ryu Controller [19], based on version 4.34, our developed
SDN application that implements the controller architecture
mentioned in section III, and etcd [20], as a distributed storage
and implementation of Raft, version 3.6. Several scripts have
been developed to automate the configuration and initialization
of the wireless interface, the GENEVE tunnels, and the virtual
switch. These scripts are executed as startup services.

As is obvious from the preceding section, there are a number
of configurable system parameters that can considerably im-
pact its performance. a) the lldp period, b) the timeout period,
c) the hbeat interval, d) the election timeout and e) the
l2 sample period are the most notable. The values of these
parameters are closely related to the characteristics of the
network, such as its size and mobility of nodes, and they create
a trade-off between rapid adaptation and network overhead.
However, their optimal configuration is partially studied in our
prior work [21], so we have specified the values that we deem
most suitable for our case, which may be found in Table I.

B

D

C

E

F

A

Fig. 2. Network Topology

In order to evaluate our SDN framework, the network would
have to feature several multi-hop paths between pairs of nodes
so that the controller’s routing decisions could have an impact.
In order to achieve this multi-hop architecture in our lab’s
restricted area, we attached multiple RF signal attenuators to
the wireless interfaces and configured them to use a single
antenna, therefore reducing signal quality without physically
distancing the nodes. The nodes were eventually arranged in
the static topology represented in Figure 2. The wireless cards
of the nodes were configured in Ad-Hoc mode, meaning that
the nodes had connectivity with the one-hop neighbors, but
there was no routing algorithm by default to allow multi-hop
connections.

TABLE II
OBSERVED METRIC VALUES AT T=0S

Link PHY PDR Ut w DAT
A-B MCS 5 0.9 0.27 0.026 52.02 Mbits/s
A-D MCS 7 1 0.27 0.019 72.2 Mbits/s
B-C MCS 7 0.78 0.12 0.020 56.32 Mbits/s
D-C MCS 5 0.91 0.25 0.025 52.60 Mbits/s

TABLE III
OBSERVED METRIC VALUES AT T=15S

Link PHY PDR Ut w DAT
A-B MCS 5 0.82 0.38 0.034 49.13 Mbits/s
A-D MCS 7 0.98 0.38 0.023 70.03 Mbits/s
B-C MCS 7 0.72 0.14 0.022 50.54 Mbits/s
D-C MCS 5 0.8 0.4 0.036 46.24 Mbits/s

B. Contending Link Experiment

In this proof-of-concept scenario, we aim at investigating
the routing decision performed by the MC for establishing a
multi-hop path for a flow between a pair of nodes, in the case
where a contending flow has been activated between nodes that
are not directly involved in the path. All nodes are configured
to operate in a 20 MHz channel. We compare the decision
of our SDN framework with the one of the widely adopted
OLSRv2. OLSRv2 uses the Directional Airtime Metric (DAT)
[22] in order to characterize the quality of the established links.
In short, this metric is a successor of the ETX metric and
essentially takes into account the link speed, via an external
measurement process and the packet loss rate through analysis
of multicast control traffic. DAT can be expressed with a
human readable value of link speed in bits/s, between 119
bit/s and 2 Gbit/s.

We conducted two experiments, one with the SDN frame-
work and one with the OLSR, both under the same scenario.
We start the scenario with the activation of a UDP flow
between nodes A and C. The data rate of the flow is 30 Mbit/s
and is enough to saturate both the two-hop links between
A and C. The first refers to the path through relay node B
and the second through relay node D. In Table II we show
the observed metrics as collected by the respective modules
at t=0s. Although the network is essentially idle, the airtime
utilization values are considerably over zero, as they represent
the time for the transmission of SDN/OLSR control messages
as well as 802.11 control and management frames. However,
the link between B and C exhibits lower utilization due to the
nodes being more isolated. By inspecting our defined weights
(w) and the DAT values is evident that both SDN and OLSR
will prefer to route the flow through node D and this is exactly
what happened. Figure 3 shows the achieved throughput of
the flow for the period that it was active for both SDN and
OLSR. In t=10s we stop the flow and we activate a new
flow of 10 Mbit/s UDP traffic between node E and F, which
are directly connected. After 5s, in t=15s, which is enough
time for the metrics’ values to be updated, we activate again
the flow between A and C. The observed metric values are
referenced in Table III.

The inspection of the table allows us to derive some very



useful insights. We observe that the utilization values are
significantly increased for both nodes A and D, while for
node B it remains quite similar with the case where the flow
between A and C was the only one existing in the network. The
transmission PHY rate as well as the PDR remain at similar
values for all the links involved. This can be attributed to
the fact that node E is in the sensing range for both nodes
A and D, resulting in both nodes spending significant time
sensing the medium busy. However, as both nodes are also
in the range of node E, when it is their turn to transmit,
E will sense the medium busy and defer its transmission.
This explains why PDR remains unaffected, as the carrier
sense of 802.11 CSMA/CA guarantees a minimum, close to
zero, amount of collisions and consequently, the rate control
algorithm keeps the same selection of PHY rate. This is the
same reason why OLSR that considers only link speed and
packet losses, calculates similar values for the DAT metric, as
it does not account for the utilization of the links. Observing
the weights we can deduce that the SDN controller selects
the path through node B, while OLSR does not change its
selection of a path through node D. Eventually, Figure 3 shows
the achieved throughput for the last and the previous stages
of the scenario for both SDN and OLSR. A major throughput
improvement, around 41%, in this scenario, is evident when
routing accounts for the utilization of the wireless medium, as
in the case of our SDN framework.

0

5

10

15

20

25

30

0 5 10 15 20 25

Time (sec)

Throughput (Mbits/sec) SDN Throughput (Mbits/sec) OLSR

Fig. 3. Throughput of flow between A and C.

V. CONCLUSION

In this paper, we detailed the implementation of our SDN
framework for an 802.11 MANET network that effectively
adopts and combines the strengths of traditional MANET rout-
ing protocols and SDN architectures. Our developed solution
is fault-tolerant and resilient with each node ready to assume
the role of the SDN controller for the whole network, through
a Raft-based election process. It features a distributed topology
discovery process and is based on an in-band architecture
allowing the applicability on devices with a single wireless
interface. Furthermore, it follows a cross-layer approach in
routing by leveraging 802.11 MAC layer statistics in order
to accurately capture link capacities. The benefits of such an
approach have been demonstrated under a proof-of-concept
experimentation.

As future work, we consider the introduction of hierarchy
and multiple tiers of SDN networks that will enable our system
to scale efficiently.

REFERENCES

[1] MarketsandMarkets, “Software-Defined Networking Market by Compo-
nent (SDN Infrastructure, Software, and Services), SDN Type (Open
SDN, SDN via Overlay, and SDN via API), End User, Organization
Size, Enterprise Vertical, and Region - Global Forecast to 2025,” 2020.

[2] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” Tech. Rep., 2003.

[3] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh
software defined networks (wmSDN),” in 2013 IEEE 9th international
conference on wireless and mobile computing, networking and commu-
nications (WiMob), 2013.

[4] M. Labraoui, M. Boc, and A. Fladenmuller, “Self-configuration mech-
anisms for SDN deployment in Wireless Mesh Networks,” in 2017
IEEE 18th International Symposium on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2017.

[5] “Flexible SDN control in tactical ad hoc networks, author=Poularakis,
Konstantinos and Qin, Qiaofeng and Nahum, Erich M and Rio, Miguel
and Tassiulas, Leandros,” Ad Hoc Networks, vol. 85, pp. 71–80, 2019.

[6] D. Giatsios et al., “Giatsios, Dimitris and Choumas, Kostas and Flegkas,
Paris and Korakis, Thanasis and Cruelles, Joan Josep Aleixendri and
Mur, Daniel Camps,” in ICC 2019-2019 IEEE International Conference
on Communications (ICC), 2019.

[7] C. Y. Hans, G. Quer, and R. R. Rao, “Wireless SDN mobile ad
hoc network: From theory to practice,” in 2017 IEEE International
Conference on Communications (ICC), 2017.

[8] P. Bellavista, A. Dolci, and C. Giannelli, “MANET-Oriented SDN:
motivations, challenges, and a solution prototype,” in 2018 IEEE 19th
International Symposium on” A World of Wireless, Mobile and Multi-
media Networks”(WoWMoM), 2018.

[9] K. Streit, N. Rodday, F. Steuber, C. Schmitt, and G. D. Rodosek,
“Wireless SDN for highly utilized MANETs,” in 2019 International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2019.

[10] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The Design and
Implementation of Open {vSwitch},” in 12th USENIX symposium on
networked systems design and implementation (NSDI 15), 2015.

[11] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), 2014.

[12] M. Rademacher, F. Siebertz, M. Schlebusch, and K. Jonas, “Experiments
with OpenFlow and IEEE802. 11 Point-to-Point Links in a WMN,”
ICWMC 2016, p. 111, 2016.

[13] S. Sharma, A. Nag, P. Stynes, and M. Nekovee, “Automatic configuration
of openflow in wireless mobile ad hoc networks,” in 2019 International
Conference on High Performance Computing & Simulation (HPCS),
2019.

[14] O. S. Specification, “OpenFlow Version 1.3.1,” Open Networking Foun-
dation, 2012.

[15] X. Chen, T. Wu, G. Sun, and H. Yu, “Software-defined MANET swarm
for mobile monitoring in hydropower plants,” IEEE Access, vol. 7, pp.
152 243–152 257, 2019.

[16] I. Syrigos, S. Keranidis, T. Korakis, and C. Dovrolis, “Enabling wireless
lan troubleshooting,” in International Conference on Passive and Active
Network Measurement, 2015.

[17] I. Syrigos, N. Sakellariou, S. Keranidis, and T. Korakis, “On the
employment of machine learning techniques for troubleshooting WiFi
networks,” in 2019 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), 2019.

[18] D. N. da Hora, K. Van Doorselaer, K. Van Oost, R. Teixeira, and C. Diot,
“Passive wi-fi link capacity estimation on commodity access points,” in
Traffic Monitoring and Analysis Workshop (TMA) 2016, 2016.

[19] Ryu Controller. [Online]. Available: https://ryu.readthedocs.io
[20] Etcd. [Online]. Available: https://etcd.io/
[21] K. Choumas and T. Korakis, “On using Raft over Networks: Improving

Leader Election,” IEEE Transactions on Network and Service Manage-
ment, 2022.

[22] H. Rogge and E. Baccelli, “Directional airtime metric based on packet
sequence numbers for Optimized Link State Routing Version 2 (OL-
SRv2),” Tech. Rep., 2016.


