
Auction-based Scheduling of
Wireless Testbed Resources

Harris Niavis, Kostas Choumas, George Iosifidis, Thanasis Korakis and Leandros Tassiulas
Dept. of Electrical and Computer Engineering, University of Thessaly, and CERTH, Greece

Abstract—Experimentation in testbeds is gaining increasing
ground as a necessary validation step for every theoretical study
in communication networks. However, the first-come-first-served
policy employed today by most testbeds does not ensure the fair
and efficient utilization of their resources, which often lie idle.
Ideally, every testbed should be utilized as much as possible and
serve the most important requests. In this paper we introduce
a novel resource scheduling mechanism for the wireless testbed
NITOS. The proposed scheme is based on VCG auctions and
includes an allocation and a pricing rule which induce the users
to judiciously submit experiment requests. We prove theoretically
and demonstrate numerically that this scheme ensures that the
testbed resources (nodes and channels) are assigned to the users
with the highest needs. Our mechanism can be incorporated in
the next generation resource management systems for NITOS
and similar testbeds.

I. INTRODUCTION

Today there is growing consensus that a complete and de-

tailed theoretical study of a wireless network problem must be

followed by an extensive validation of the results. Therefore,

it is not surprising that an increasing number of researchers

run experiments on testbeds. This tendency is best exemplified

by the recent deployment of many wireless testbeds around

the globe, such as ORBIT [1], Emulab [2] and NITOS [3].

These facilities are open to the research community which

means that anyone can access their resources - sometimes

even remotely. At the same time, there are currently many

ongoing efforts for federating different testbeds. Representative

examples are the EU projects Fed4FIRE (fed4fire.eu) and

OpenLab (www.ict-openlab.eu). The ultimate goal of these

initiatives is to create a large-scale shared facility that will

offer a vast set of open-access experimentation tools.

A. Motivation and Methodology

In this new era, it is crucial to derive methods for man-

aging efficiently the resources of each testbed (or, federation

of testbeds). Clearly, as the number of experiment requests

increases [4], the typical “send-an-email” method for reserving

the entire testbed is not efficient. In NITOS testbed, we use

OMF, a cOntrol and Management Framework [5] to allocate

subsets of the testbed’s resources (known as slices) to multiple

users on a first-come-first-served (FCFS) fashion. Although

this policy increases the number of experiments that can

be concurrently executed, it does not answer the following

question: when two or more users ask for the same wireless

node who should be able to reserve it? The testbed manager

would prefer to allocate it to the user with the highest needs.

This work was supported by the European Commission’s FP7/2007-2013
under grant agreement no318389 (Project name: Fed4FIRE).

However, the manager is not currently aware of the importance

of each experiment.

In this work, we employ auction theory [6] to address

this issue. Auction mechanisms manage to allocate resources

efficiently, i.e., to the users (bidders) with the largest needs,

even when the latter is private information known only to

each user. The last few years auctions have been extensively

used in network resource allocation problems [7]. Typically,

every auction includes an allocation rule according to which

the auctioned items are assigned to the bidders, and a pricing

rule that determines how much each bidder will pay. Here, our

objective is to induce the testbed users to reveal their actual

needs, i.e., declare truthfully how important their experiments

are, and assign accordingly the NITOS resources to users with

the highest needs.

To achieve this goal, we use the VCG auction mechanism

[6] which guarantees truthful bidding. This is ensured due to

the VCG pricing rule that charges each user a price equal to the

externality it induces to other users. Intuitively, a user who asks

and receives a NITOS node that is requested by many other

users, pays a high price since her request impacts multiple

users (the other requesters). In order to enable payments, we

incorporate a closed virtual economy where users are initially

endowed with a virtual currency (points) budget which can

spend to pay for their experiments. In this context, each

submitted request consists of the description of the slice and

the points the user is willing to pay for it. The testbed manager

(scheduler) collects the requests and runs periodically the

auction to determine which users will be satisfied and what

prices will be charged.

One particular aspect of the testbed reservation problem

is that often a user is not interested in reserving a specific

resource, i.e., a certain node or frequency, but can be actually

satisfied with any resource of the testbed (or any resource of a

specific type). In NITOS for example, a user may want to use a

wireless node without being interested on whether it is mobile

or fixed. Flexibility in requests is very important both for users,

who can more easily reserve resources, and for the testbed

which can satisfy more users. In the proposed mechanism, we

explicitly take into account this aspect. We classify NITOS

resources in different groups based on their characteristics and

allow each user to ask for a specific resource (non-flexible

request) or for any resource belonging to a particular group

(flexible request).Accordingly, we design additional constraints

to ensure that the allocation of the resources will be feasible.

This is a non-trivial task since each resource may belong to

many different groups, e.g., a node belongs both to the general

group of wireless nodes and to the group of mobile nodes.

978-1-4799-3083-8/14/$31.00 c© 2014 IEEE

TABLE I
NITOS UTILIZATION STATISTICS

Time Period Number of Users Number of Requests

1st Semester 2011 93 3038
2nd Semester 2011 134 4213
1st Semester 2012 211 5122

2nd Semester 2012 234 5403
1st Semester 2013 289 5968

B. Related work and Contributions

Resource allocation problems for shared infrastructures, like

NITOS, appear in several networking areas. Grid computing

and more recently cloud computing are two prominent ex-

amples where users generate several job (task) requests that

need to be executed in the (virtualized) servers. Auction-

based methods for resolving request conflicts have been often

used for these systems, e.g., see [9], [10], [11] and references

therein. However, NITOS testbed scheduling differs since the

resources cannot be shared by many users, i.e., they are not

virtualized (unlike processing power and storage capacity in

clouds). Furthermore, the NITOS scheduler, in contrast to

cloud managers, cannot migrate or postpone the execution of

requested experiments (non-preemptive scheduling).

The various wireless testbeds around the globe do not

currently employ sophisticated resource allocation schemes.

For example, in ORBIT [1] each user reserves exclusively the

entire testbed (400 nodes) for several hours. Even worse, this

is accomplished with a first-come-first-served (FCFS) policy,

which does not take into account the importance of each

experiment. On the other hand, in PlanetLab [12] and VINI

[13] all requests are admitted and executed in a best effort

basis, i.e., without performance guarantees. Obviously, this

method is also oblivious to users’ needs.

To the best of the authors’ knowledge, the only suggestion

for a wireless testbed scheduling scheme where users (may)

have different priorities is Mirage [14]. In this scheme, the

testbed manager runs a first-price auction in order to determine

the user requests that will be implemented. However, this

mechanism does not always allocate the resources to the most

important requests since first price auctions are often untruthful

and hence inefficient [6]. Here, we propose a different scheme

that overcomes this barrier. Therefore, there is no need for

additional mechanisms such as the tax and usage control

systems proposed in [14]. Besides, our mechanism models and

takes explicitly into account the possibility of flexible user

requests, an increasingly important aspect of wireless testbeds

[15] .

To this end, our main technical contributions are:

• Testbed Modeling. We provide a systematic method for

modeling the resources of NITOS which allows the design

of auction-based mechanisms for allocating its resources.

Our model takes explicity into account the flexibility of

user requests. This method is generic and can be used in

other wireless testbeds as well.

• Auction Design. We propose an auction scheme that

enables the efficient usage of NITOS resources under

high demand and unknown user valuations, for flexible

or non-flexible requests. The mechanism is carefully

Fig. 1. The 50 NITOS nodes can be classified in 7 groups. Namely, there
is the largest group of all nodes (50) which are separated in the group of
fixed nodes (30) and the group of mobile nodes (20). The fixed nodes can
be further classified as powerful Grid (20) and non-powerful Orbit-like nodes
(10), while the mobile nodes are characterized based on their mobility pattern
to Rail (10) and iRobot nodes (10).

designed based on our experience with NITOS, and takes

into account practical considerations. Hence, it can be

incorporated in the forthcoming OMF versions.

• Performance Evaluation. Using real data statistics from

NITOS [16], we compare the proposed mechanism with

the FCFS policy which is currently used in NITOS and

other similar testbeds. Our findings indicate a substantial

performance improvement which increases with the load

and the size of the testbed, even when only a small subset

of users submit flexible requests.

The rest of this paper is organized as follows. Section II

provides some necessary details about NITOS, presents its

model abstraction (system model), and introduces formally the

NITOS scheduling problem. Section III presents the auction

mechanism, i.e., the scheduling and pricing rules, that handles

both flexible and non-flexible requests. In Section IV we

evaluate the performance of the auction scheme, for a variety

of scenarios, that are based on NITOS statistics we have

collected. Finally, Section V concludes our study.

II. SYSTEM MODEL AND PROBLEM STATEMENT

NITOS Background and Model. The NITOS wireless

testbed, which is deployed at the premises of University of

Thessaly, comprises 50 nodes that have a variety of wireless

interfaces such as WiFi, LTE, Bluetooth, etc. Every experiment

can be executed using any subset of the 32 different frequency

channels that are available. NITOS is open to the research

community (accessible through Internet), and has been recently

federated with other testbeds around the globe. This has

resulted in a substantial increase of the experiment requests,

as can be inferred from Table I. These requests are currently

served on a FCFS basis, while we also employ the concept

of spectrum slicing [17]. This means that different users can

concurrently reserve different subsets of nodes and frequencies

and experiment without interfering with each other. However,

this slicing does not currently take into account user valuations

nor it allows for flexible requests.

The latter is very important as the various NITOS resources

share some common operational features and capabilities with

each other, thus can be classified in different groups. Each

group contains resources that, in a specific level of abstraction,

are identical and hence can be used interchangeably in certain

experiments (the ones that need only that level of abstraction).

More specifically, the NITOS nodes can be classified in 7
overlapping groups (forming an hierarchy) as explained in

Figure 1, and the frequencies in 3 groups, where the largest

contains all the channels and the other 2 disjoint groups with

12 and 20 channels correspond to the 2.4 GHz and 5 GHz

spectrum bands respectively.

More formally we model NITOS as follows1. We assume

that there is a set N of N = |N | = 50 wireless nodes and

a set F of F = |F| = 32 different frequency channels. The

scheduler allocates each of these resources, for a minimum

time duration of 2 hours. In other words, the system resource

management and operation is time slotted, t = 1, 2, . . . , T .

We assume that the allocation of the resources is determined

by the scheduler in the beginning of each time epoch which

consists of T = 12 slots (one-day period). This means that

the resources are reserved in the beginning of each day (set at

8am GMT hours).

Modeling a real system like a wireless testbed is a quite

challenging task. Here, we introduce the concept of the NITOS

Resource Unit (NRU) which is defined as a pair of node - time

slot (n, t), or a pair of frequency - time slot (f, t). In other

words, each of these pairs is considered a distinct resource unit

of the testbed that can be allocated to at most one user during

each epoch. We denote with M the set of all NRUs:

M = {(n, t), (f, t) : ∀n ∈ N , ∀f ∈ F , t = 1, 2, . . . , T} (1)

Clearly, some of these NRUs share common features (i.e., can

be used for running the same experiments) and belong to the

same group as it was explained above.

Namely, we assume that there is a set G of NRU groups2,

where each group g ∈ G contains a certain number of cg = |g|
NRUs. For example, the NRU group of the Rail NITOS nodes

for a specified time slot, contains 10 NRUs. In NITOS there are

7 groups for the nodes and 3 groups for the channels which

are accoringly extended to include the time dimension (and

become NRU groups). The groups are overlapping and each

NRU may belong to multiple different groups. In particular, for

a specified time slot, a Rail node belongs to the corresponding

group of Rail nodes, to the group of mobile nodes and to the

largest group of all NITOS nodes. It is worth mentioning that

there are groups containing only one NRU, enabling this way

the users to request very specific resource units.

User Requests. We assume that there is a set I of testbed

users who are interested in running experiments during the

current epoch. Each user i ∈ I submits a set of requests Ri to

the scheduler, as depicted in Fig. 2. With every request r ∈ Ri,

the user either asks specific NRUs, or any NRUs belonging in

certain groups, and provides the respective declared valuation

v̂r ≥ 0. Notice that the actual valuations vr are private

information, known only to each user, and in general can be

different that those declared, i.e., vr 6= v̂r. For example, a user

may declare a higher valuation v̂r > vr believing that this will

increase the probability to acquire the requested resource units.

We define the vector of all submitted valuations:

1Although the auction is designed for NITOS, we provide a parameterized formulation,
i.e., using variables instead of specific numbers, so as to have a general formulation
applicable for any similar testbed infrastructure.

2Hereafter we use the term “group” and “set” interchangeably.

Fig. 2. Schematic diagram of the NITOS resource scheduling process.

v̂ = (v̂r ≥ 0 : ∀r ∈ R) (2)

Note that every request may ask NRUs belonging to different

groups, more general or more specific. For example, consider

a user with a general experiment request who asks for a

specific frequency and any couple of wireless nodes. She can

be satisfied by any couple of nodes that belong to the largest

group of all NITOS nodes and the specific requested channel.

We need to stress here that a user is satisfied only if she

receives all the requested NRUs. The subset of the reserved

NRUs due to a specific request r ∈ R is called slice Sr.

Charging Scheme. We assume that there is in place a pric-

ing and charging mechanism. This can be any type of closed

virtual economy or point system that can be incorporated in the

new version of the NITOS Scheduler. Each user is endowed

with B ≥ 0 virtual currency units (hereafter referred to as

points) in every beginning of a large time period which consists

of Q time epochs. This is the budget of each user that she can

use to pay for the slices she needs during these Q epochs3.

For each user i ∈ I, the scheduler determines the subset of

her requests R̃i ⊆ Ri that will be admitted and the aggregate

points pi ≥ 0 that she will pay for all the admitted requests.

The prices are determined according to the payment rule the

scheduler employs. Clearly, as it will be shortly discussed,

the price for a user i ∈ I depends both on the requested

resource units and the declared valuation v̂r for each of her

admitted requests r ∈ R̃i. Obviously, it is most likely that

a user will succeed in getting cheaper a resource when she

submits a request like give me any of your fixed nodes, instead

of submiting a request like give me node 29.

Scheduling Problem. The objective of the scheduler is

to maximize the efficiency of NITOS by admitting the most

important requests. Let us introduce the 0−1 discrete variable

xr = {0, 1} which determines whether the request r will be

admitted or not. We define the respective allocation vector:

x = (xr ∈ {0, 1} : ∀r ∈ R) (3)

Similarly, we introduce the pricing vector for all users in I:

p = (pi ≥ 0 : ∀i ∈ I) (4)

Formally, the problem of finding the optimal allocation-pricing

policy (x∗,p∗) is defined as follows:

NITOS Scheduling Problem: Given a set R of user requests

for experiments, within a certain time epoch, and a set M of

NITOS Resource Units (NRUs), the scheduler must devise the

3 The exact value of Q can be defined using statistic data from NITOS. Our preliminary
results indicate that a month is a suitable time period. The remaining budget at the end
of each period is not cleared and can be used by each user in the next period, along with
the new credits.

allocation x∗ and pricing p∗ policy which ensures the efficient

usage of NITOS resources.

In the sequel we present an auction scheme that address this

problem while takes into account the particular characteristics

of testbed scheduling. That is, user requests are, in general,

flexible but at the same time inelastic since, in order to satisfy

a user, the scheduler should allocate to her all the requested

resources (i.e., the entire slice).

III. SCHEDULING POLICY

In this section we use auction theory and design an allo-

cation and pricing mechanism that successfully addresses the

above challenges and solves the NITOS Scheduling Problem

for flexible and non-flexible user requests. One of the prevalent

auction mechanisms that ensures truthful bidding under a

variety of settings and assumptions is the celebrated Vickrey

- Clarke - Grooves (VCG) mechanism [6], which we also

employ in this work.

A. Allocation Rule

Let us begin with the allocation rule. In the beginning of

each epoch, the scheduler collects all the requests R and

constructs the NRU request matrix A:

A =
(

arg ∈ {0, ..., cg} : ∀r ∈ R, ∀g ∈ G
)

(5)

where arg is the number of NRUs from group g ∈ G
that request r ∈ R asks. The goal of the NITOS scheduler

is to maximize the total sum of the valuations of the users

whose requests are admitted, i.e., to maximize
∑

r∈R xrv̂r. To

achieve this, the scheduler should resolve the conflicts created

by the different requests.

One unique aspect of the proposed scheme is that it allows

conflict resolution for requests of different flexibility. Note

that the creation of the different NRU groups implies that we

actually have less physical resource units than the union of

these sets (groups). For example, if a certain mobile node is

assigned to a user with a flexible request (i.e., asking for any

node), then this node cannot be assigned to another user who

has explicitly asked for it (in the same slot). To resolve such

conflicts, and ensure that the admitted requests can be actually

implemented, we need to carefully design the constraint set of

the NRU allocation problem.

First, notice that for any two groups g1, g2 ∈ G it holds

g1 ⊇ g2, g1 ⊆ g2, or g1 ∩ g2 = ∅. In other words, based on

the definition of NITOS groups, there is an hierarchy among

the NRU groups. The lowest level groups are the singletons

consisting of the specific nodes and frequencies, while the

highest level groups have no supersets in G (e.g., the group of

all frequencies). A set of different requests can be concurrently

admitted only if they are not violating the size (or, capacity)

constraint for any group g ∈ G that the requested NRUs belong

to. Hence, we need to ensure for every group g ∈ G, and all

its subgroups s ⊆ g, with s ∈ G, that their size constraint is

not violated. Namely, that the scheduler does not assign more

NRUs (to specific or more flexible requests) than those that

are available in the respective groups.

Summarizing the above, the scheduling problem (SP) can

be written as follows:

SP: max
x

∑

r∈R

xrv̂r (6)

s.t.
∑

s∈G:s⊆g

(

∑

r∈R

arsxr

)

≤ cg, ∀g ∈ G (7)

xr =∈ {0, 1}, ∀r ∈ R (8)

where constraints (7) ensures that the admitted requests can

be implemented, i.e., no more NRUs than the available are

assigned under any level of abstraction/flexibility. This is

a discrete optimization problem, due to (8), based on the

weighted set packing problem which is NP-hard [8]. However,

as it will be shown in the sequel, the small dimension of

the NITOS scheduling problem renders the complexity of

its solution numerically affordable for offline calculations, as

those we need in testbeds (running once a day or a week).

The solution x∗ of the (SP) problem indicates which re-

quests should be admitted, yet it does not determine which spe-

cific NRUs should be used to satisfy each one of the admitted

requests. The process of mapping the admitted requests to spe-

cific available (i.e., not allocated to other requests) resources

is the following: We start from the lowest and continue to

the highest level groups, mapping randomly selected NRUs of

these groups to the admitted requests. The following example

will illustrate sufficiently the whole process.

Numerical Example. At this point, let us provide a simple

yet indicative example to further explain the allocation scheme.

Consider a group gM = {a1, a2, a3, b1, b2, b3} of testbed

nodes, that is separated into two subgroups ga = {a1, a2, a3}
and gb = {b1, b2, b3} of a-type and b-type nodes respectively

(for simplicity, we assume that T = 1). Also, for each node

there is an extra singleton group, i.e., ga1
= {a1}, ga2

= {a2},

ga3
= {a3}, gb1 = {b1}, gb2 = {b2} and gb3 = {b3}. Assume

that there are 3 requests r1, r2 and r3 (i) r1 asks for 2 nodes

of a-type (from ga), (ii) r2 asks simply for any 2 nodes (from

gM), and (iii) r3 asks for 1 a-type node (from ga) and the b3
node (from gb3). The requests are summarized in Table II.

In order to understand whether these requests can be con-

currently admitted we need to carefully check the capacity

constraints for each group and for all its subgroups. Starting

from the smaller groups (which do not have subgroups), we

see that there aren’t more than one requests asking for the

same specific node (singleton group). Accordingly, we check

the a-type and b-type groups. Again we see that the requested

items of a-type (or a1, a2, a3 type) do not exceed in total

the size of group a which is 3. Similarly we can verify for

the b-type nodes. Finally, all the requests do not ask in total

more than 6 nodes, which are the actual nodes the testbed has

(the size of gM). Hence, constraint (7) is satisfied ∀g ∈ G if

xr = 1, ∀r ∈ R.

After finding which requests will be admitted, we can

determine how they will be implemented. This resource al-

location process starts from the lowest level singleton groups.

Subsequently, the user of request r3 reserves the b3 resource

and the a2 resource. Then, the user of request r1 reserves the

two leftover resources of a-type and at last, the user of request

r2 reserves the remaining two b1 and b2 resources. Notice that

this greedy approach satisfies first the more specific requests

and accordingly the more general ones. Due to (7), it is ensured

TABLE II
AN EXAMPLE OF A FLEXIBLE REQUEST MATRIX Ā

Ā gM ga gb ga1
ga2

ga3
gb1 gb2 gb3

cg 6 3 3 1 1 1 1 1 1

r1 0 2 0 0 0 0 0 0 0
r2 2 0 0 0 0 0 0 0 0
r3 0 0 0 0 1 0 0 0 1

that the method will satisfy all the admitted requests, and this

concludes our example.

The solution of the SP problem is the optimal (i.e., efficient)

request admission policy x∗ which yields an aggregate system

valuation (or welfare):

SW
(

x∗, v̂
)

=
∑

r∈R

v̂rx
∗
r (9)

Notice though that this amount represents the testbed effi-

ciency only if the declared values v̂r are equal to the actual

values of the user requests vr, ∀ r ∈ R. This desirable feature

is ensured by the proper selection of the payment rule.

B. Pricing Rule

The choice of the payment rule is of crucial importance.

In VCG mechanisms, each bidder (user) is charged with a

price that is equal to the externality she induces to the system.

For example, a user who asks and receives a large slice (e.g.,

consisting of many and popular NRUs), will have to pay a high

price since her request results in dissatisfying many other users

who are rejected by the scheduler and will not be able to run

their experiments.

This payment rule for each user i ∈ I can be formally

defined as follows:

pi = SW
(

x∗
−i, v̂−i

)

− SW
(

x∗, v̂−i

)

(10)

where x∗
−i is the solution of (SP) that we obtain if we change

the valuation vector to v̂−i, setting v̂r = 0, ∀r ∈ Ri. In

other words, the first term is the aggregate valuation of the

admitted experiments of the users, other than i, when i does

not participate in the auction. The second term is the aggregate

valuation of the admitted experiments, of users other than i,

when i does submit her requests (and hence impacts the other

users).

The VCG payment induces all the users to reveal their actual

experiment valuations. Namely, each user i ∈ I declares val-

uations v̂r = vr, ∀r ∈ Ri (incentive compatibility property).

Therefore, the solution of the SP succeeds in allocating the

slices to the users with the highest needs. Notice that this

guarantees that the testbed resources will be utilized as much

as possible, which is one of the main considerations of the

testbed managers. Clearly, a user with high needs is expected to

better utilize the reserved slice. Finally, we need to stress that

VCG mechanisms posses the so-called individual rationality

property, i.e. pi ≤
∑

r∈Ri

vr, ∀i ∈ I, which means that each user

will not have to pay a higher price than the actual valuation

of her requests.

IV. PERFORMANCE EVALUATION

We compare the proposed VCG-based scheduling with the

current NITOS FCFS scheduling policy, using as performance

metrics the number of admitted requests and the produced wel-

fare (efficiency). In our simulations, we evaluate the policies

(a) Flexible requests ask for wireless nodes and
frequency channels in general.

100 200 300 400 500 600 700 800 900 1000
 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

Submitted requests

S
y
s
te

m
 W

e
lf

a
re

 (
p

o
in

ts
)

FCFS

VCG

VCG − 25%

VCG − 50%

VCG − 100%

(b) Flexible requests ask for fixed or mobile nodes
and 2.4 GHz or 5 GHz frequency channels.

Fig. 3. The System Welfare of the proposed VCG-based scheduling policy
and the current FCFS policy, with and without flexibility. The labels of the
VCG plots indicate the percentage of the flexible requests.

during an epoch (one day) without taking into consideration

the impact of the B and Q values.

Simulation setup and methodology. We used statistics

from NITOS experiment requests that are collected over the

last two years [16]. Based on their analysis, we assume that

each requested slice includes on average 5.3 nodes and 1.5
frequencies. Moreover, we have measured the request proba-

bilities for each one of the NRUs and accordingly calculated

the respective probabilities for the higher-level (more generic)

NRU groups. Clearly, the probabilities do not follow a uniform

distribution as some NRUs are more advanced and hence more

popular to the users (for example, Grid nodes are requested

more often than Orbit nodes). User valuations are randomly

drawn from a uniform distribution in the interval vr ∈ [1, 100].

We investigate the algorithm performance in 3 different

scenarios regarding the flexibility of user requests. Namely, we

consider the cases that 25%, 50% or 100% of user requests

are flexible. We want to see how the system performance is

affected as more users become flexible. Additionally, we study

the impact of the type of flexibility. That is, we first consider

the highest degree of flexibility, assuming that flexible requests

ask for any type of node and channel. Next, we consider less

flexible requests which ask for fixed or mobile nodes and

channels in 2.4 GHz or 5 GHz bands. This reveals how the

system is affected by the type (or degree) of request flexibility.

For all the plots we have run the simulation for different

number of submitted requests (ranging from 100 to 1000),

while each of these simulations is repeated 20 times.

Numerical Results. In Figure 3(a), we compare the Sys-

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

220

240

260

Submitted requests

A
d

m
it

te
d

 r
e

q
u

e
s

ts

FCFS

VCG

VCG − 25%

VCG − 50%

VCG − 100%

(a) Flexible requests ask for wireless nodes and
frequency channels in general.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

220

240

260

Submitted requests

A
d

m
it

te
d

 r
e

q
u

e
s

ts

FCFS

VCG

VCG − 25%

VCG − 50%

VCG − 100%

(b) Flexible requests ask for fixed or mobile nodes
and 2.4 GHz or 5 GHz frequency channels.

Fig. 4. The number of admitted requests under the proposed VCG-based
scheduling policy and the current FCFS policy, with or without flexibility.
The labels of the VCG plots indicate the percentage of the flexible requests.

tem Welfare (SW) of the proposed VCG-based scheduling

policy with the respective SW of the existing FCFS policy.

Interestingly, the efficiency improvement due to the proposed

scheduling policy can be up to 67%, under 1000 non-flexible

requests, which motivates its adoption by NITOS and other

similar testbeds. Notice that the simulations (with exhaustive

search) required less than 15 minutes on average to calculate

the scheduling policy for one epoch. Moreover, the admitted

requests of our policy exceed the corresponding ones of the

existing policy, as we can see in Figure 4(a). This means that

not only we admit the most important requests (those with

the highest valuations), but that we also increase the number

of served users. The performance improvement of the scheme

increases with the number of submitted requests.

Accordingly, we study the performance of the proposed

policy when users submit flexible requests. In the same Figures

3(a)-4(a), there are some plots that correspond to different

percentages of flexible requests (percentages of users who sub-

mit flexible requests), where each flexible request asks for the

highest level groups of resources. Obviously, as the percentage

of flexible requests (wrt the total submitted requests) increases,

the scheduling performance improves as well. It is important

to notice here that even when only 25% of users submit

flexible requests, the performance of the proposed scheme is

significantly improved compared to the case without flexible

requests, and to the FCFS scheme.

In addition, we run one more set of simulations, where the

flexible requests are asking now for lower level groups of

resources (less flexible). Notice that these requests are still

flexible, since they are not demanding specific resources, but

less flexible than the previous ones, since they are asking

resources from lower level (i.e., smaller) groups. As it is

depicted in Figures 3(b) and 4(b), the performance of the

scheduling policy is degraded when the flexible requests are

asking for lower level groups, compared to the previous results

depicted in the figures above.

V. CONCLUSIONS

This work is motivated by our every day experience with

NITOS, and constitutes the first step in our effort to design

and implement an auction scheme for the practical and im-

portant problem of efficient resource allocation in wireless

testbeds. We have proposed a combinatorial VCG multi-item

auction which ensures the efficient utilization of the testbed’s

resources, while takes into account the flexibility that some

user requests may have. Our real data-driven numerical anal-

ysis showed significant performance gains compared to the

schemes currently employed by NITOS and other testbeds.
There are many interesting directions for future work which

we will pursue in order to complete our study and implement

this new scheduling - pricing policy. For example, the selection

of the values for the system parameters such as the time period

T and the budget B, can be made using more detailed statistics

about user activities which we are currently collecting. Even

more challenging is to study the users behavior depending

on the B reloading policy. Namely, we expect that users will

encounter difficulties in deciding how many points they should

allocate to each of their experiments within the periods Q.

Assisting user decisions, is another intriguing direction that

actually falls into the context of behavioral economics. Finally,

we are planning to extend our study for users that are flexible

in the time dimension as well.

REFERENCES

[1] ORBIT Wireless Testbed, www.orbit-lab.org.
[2] Emulab: Network Emulation Testbed, www.emulab.net.
[3] NITOS Wireless Testbed, nitlab.inf.uth.gr/NITlab/index.php/testbed.
[4] Openlab Newsletter, www.ict-openlab.eu/fileadmin/documents/

newsletters/OpenLab News 03-2013.pdf.
[5] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “OMF: a control and

management framework for networking testbeds”, SIGOPS Oper. Syst.

Rev., vol. 43, no. 4, Jan 2010.
[6] V. Krishna, “Auction Theory”, Academic Press, 2010.
[7] I. Koutsopoulos, and G. Iosifidis, “Auction Mechanisms for Network

Resource Allocation”, in Proc. of WiOpt/RawNet, 2010.
[8] S. Vries, and R. V. Vohra, “Combinatorial Auctions: A Survey”, IN-

FORMS Journal on Computing, vol.15, no.3, 2003.
[9] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models

for resource management and scheduling in Grid computing”, Concur-

rency and Computation: Practice and Experience, vol. 14, no. 13-15,
2002.

[10] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic Resource Allocation for
Spot Markets in Cloud Computing Environments”, in Proc. of IEEE UCC,
2011.

[11] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, J. Liu, “A Framework
for Truthful Online Auctions in Cloud Computing with Heterogeneous
User Demands”, in Proc. of IEEE Infocom, 2013.

[12] PlanetLab, planet-lab.org.
[13] VINI, “A Virtual Network Infrastructure”, http://www.vini-veritas.net/.
[14] B.N. Chun, et al., “Mirage: a microeconomic resource allocation system

for sensornet testbeds”, in Proc. of IEEE EmNets, 2005.
[15] G. Coulson, et al., “Flexible experimentation in wireless sensor net-

works”, Communications of the ACM, vol.55, no. 1, pp. 82-90, 2012.
[16] NITOS Usage Statistics, available online at volos.iti.gr/∼gitsis/.
[17] A.C. Anadiotis, et al., “Towards maximizing wireless testbed utilization

using spectrum slicing”, in Proc. of Tridentcom, 2010.

