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Abstract— Raft is a state-of-the-art consensus algorithm for
state replication over a distributed system of nodes. According
to Raft, all state updates occurring anywhere in the system are
forwarded to the leader, which is elected among the system
nodes to collect and replicate these updates to all other nodes.
Thus, the time required for the state replication, named as
system response time, depends on the delays between the leader
and all other nodes. After multiple node failures and leadership
transitions, each node can be leader with a probability that
affects the expected response time. The leadership probabilities,
in turn, are affected by the random intervals that nodes are
waiting, after detecting a leader failure and before competing
for the successive leadership. The Raft designers suggest the
ranges of these intervals to be equal for all nodes. However,
this may result in increased expected response time. In this
paper, mathematical models are presented for estimating the
ranges resulting in the desired leadership probabilities. The
presented theoretical results are also confirmed by testbed
experimentation with an open-source and widely used Raft
implementation. Index Terms— Raft, distributed-system, clus-
tering, testbed-experimentation

I. INTRODUCTION

Distributed systems receive extensive attention nowadays,
that networking technologies are flourishing and time-critical
system functions are spread over multiple interconnected
nodes. The emerging Software Defined Networking (SDN)
excels in assisting distributed systems, while in parallel is
assisted by distributed systems, since distributed SDN con-
troller clusters are more efficient than single-instance con-
trollers [2]. The most popular open-source SDN controllers,
such as ODL [3] and ONOS [4], are fundamentally designed
to support clustering. Similarly, Necklace [5] provides an
architecture for distributed Service Function Chaining that
performs surprisingly well. Finally, Kubernetes [6], Open-
Stack [7] and Hyperledger-Fabric [8] are a few examples of
widely used systems with increased scalability and efficiency,
due to their distributed operation, which is assisted by
etcd [9] with distributed key-value store. However, these
systems require a protocol for reaching consensus between
their nodes.

Raft [10], [11] is the common point of all the aforemen-
tioned distributed systems [3]-[9] for reaching consensus. It
inherits high performance and correctness from its prede-
cessor and less understandable Paxos, which is assumed as
the “gold standard” for distributed consensus [12]. Raft is
a leader-based protocol, meaning that commands received
for execution by a system node have to be replicated to
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Fig. 1. (a) Nodes receive equal number of commands per time unit, (b)
one node receives all commands (c) unknown rates of receiving commands.

the whole system through a leader, which is elected among
the system nodes. Commands received by non-leaders are
redirected to the leader at the time cost of their forwarding.
After multiple node failures and leadership transitions, the
expected response time of a Raft-operated system, which is
the total time required for a command execution, is obviously
affected by the leader election process. Leaders receiving
more commands or being closer to other nodes are more
efficient regarding the system response time, thus they should
be boosted by this process.

According to the Raft election process, each node cam-
paigns for the leadership, when it realizes that there is
no existing leader and after waiting for a random time
interval. This interval is called election timeout and the
node with the lowest one, when multiple nodes campaign
together, most probably wins. Raft designers propose the
selection of this random timeout from the same time range
for all nodes, which results in identical leadership winning
probabilities for all nodes, when the delays between them are
identical. Although this is the case for many scenarios that
the distributed nodes are collocated as virtual machines in the
same data-center, there are also many other cases where the
nodes are connected through networks which are extended
over large geographic areas and the delays between them are
unequal.

In this paper, the leadership probabilities of the nodes
are modeled as functions of the time ranges of their ran-
dom election timeouts. Appropriate configurations of the
timeout ranges result in increased leadership probabilities
of the nodes being closer to or receiving more commands
than the other system nodes, which in turn decreases the
expected response time. For example, if all nodes receive
equal number of commands per time unit, the response time
benefits from a central node as a leader (Figure 1.a), whereas
if one node receives almost all commands, then this one



should be the leader, despite its potentially high delays to the
other nodes (Figure 1.b). In the presented experiments, being
agnostic to the receiving command rates at the nodes of each
distributed system (Figure 1.c), we use potential networks
interconnecting these nodes to exemplify how the proposed
models can be used for adjusting the leadership probabilities
as we wish. As a proof of concept, we theoretically estimate
and experimentally validate the timeout ranges that share
equally the leadership over two network examples. Although
equal leadership probabilities do not necessarily result in
minimum response time, the presented examples show the
capability of the proposed models to succeed every set of
leadership probabilities, including the one that minimizes
the response time under whichever set of receiving com-
mand rates. For specific systems, given their networks and
receiving command rates, the same models can be used for
achieving the probabilities that minimize the response time.

The paper is divided into the following sections. Section II
presents related work suggesting Raft enhancements. Section
III highlights insights into the Raft protocol. Sections IV
and V model the leadership probabilities and the expected
response time of a Raft-operated system running over a net-
work, assuming two different types of node failures. Section
VI provides results of testbed experimentation confirming the
theoretical analysis of the previous sections. Finally, Section
VII concludes the paper.

II. RELATED WORK

In [13] and [14], authors study the placement of a dis-
tributed cluster of SDN controllers that use Raft for their
consensus. Controller placement is optimized for minimum
overall control traffic, based on the bandwidth requirements
of the Raft control messages. The leader election is not
considered, assuming that all controllers, leaders or not, have
almost the same long-term bandwidth requirements for their
control messaging. In [1], authors focus on the leader election
process and study the effect of the underlying network on
the election process and hence on the Raft performance,
presenting preliminary results of this work.

The transformation of the network from problem to solu-
tion is presented in [15], proposing the usage of dedicated
P4-based network devices for the partial offloading of the
Raft operation to the underlying network. The modeling
and the numerical evaluation of the Raft-operated distributed
SDN clusters is given in [16], using Stochastic Activity
Networks and estimating the effect of various hardware and
software controller failures on the system response time.
However, the differentiation of the delays on the connections
between the nodes is not considered in this work, as well as
their impact on the election process and the response time.
The distances and the corresponding propagation delays be-
tween the ONOS controllers are considered by the authors of
[17] for the master controller election, however, they always
suggest the most central node as the best master controller,
which is the Raft leader, regardless of the receiving command
rates at the controllers.

The election timeouts are adjusted in [18] and [19], as we
do in this paper, for the purpose of avoiding useless elections,
since the system is unavailable during the elections. In [18],
the dynamic increase of the election timeouts eliminates the
elections that could happen because the still-alive leader is
overloaded. The rationale is that overloaded leaders cannot
send in-time their control messages and the time intervals
between them vary a lot. The other nodes expect the intervals
between the receiving messages to be less than the election
timeout, otherwise they trigger elections assuming that the
last leader has failed, although it has not. Similarly, in [19],
two algorithms are proposed for minimizing the number
of elections without a winner (due to split vote, that will
be presented later in detail). Finally, in [20], the election
timeouts are optimized for minimizing the probability of the
cluster’s majority being unreachable for the leader due to
packet losses on the network links. All these approaches use
the election timeouts for optimizing Raft, however, only the
last one aims at electing the most efficient leader, but it does
not consider the network delays effect.

In this work, we present models for adjusting the election
timeouts and, in turn, the leadership probabilities according
to the underlying network delays. Given the rates of receiving
commands at the nodes of a cluster, the presented models
are able to estimate the election timeouts that minimize the
response time of this cluster. Although preliminary results are
given in [1], this paper presents in more detail extra models
covering the response time and two failure types instead of
one, as well as extra experiments related to the response time.

III. INSIGHTS INTO RAFT

In a Raft-operated cluster (or distributed system) of nodes,
all nodes are state machines computing identical copies of
the same state and continue operating even if some of them
are down. Replicated state machines are used to solve a
variety of fault tolerance problems in distributed systems.
They are typically implemented using a replicated series of
commands, which has to be executed by each state machine
in order. Keeping the replicated commands consistent is the
responsibility of the Raft consensus algorithm.

Raft relies on the election of a leader, which is responsible
for managing the replicated commands. The leader has to be
elected when a cluster starts or when the previous leader
has failed. At any given time, each node is either leader,
follower or candidate. Between the elections, there is at
most one leader and the other nodes are followers, while
during the elections there is no leader and some nodes
become candidates, which exist only during the elections.
The followers are passive, meaning that they do not issue
requests on their own, but only respond to requests from
leaders and candidates. The leader handles all incoming
commands, even the ones received by the followers, by
replicating them across the cluster and forcing each follower
to have the same series of commands with the leader. The
leader election and the command replication processes will
be presented in more detail in the following subsections.
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A. Leader election

When nodes start up, they begin as followers. A node
remains follower as long as it receives requests from a
leader or a candidate. The leader sends periodic heartbeat
requests to all followers in order to maintain its authority.
The heartbeat timeout is the period between the heartbeats,
which should be slightly higher than the average time it takes
a node to send requests in parallel to all cluster nodes and
receive their responses. If a follower receives no heartbeat
over a random time period called election timeout, which
should be an order of magnitude higher than the heartbeat
timeout, then the follower assumes that there is no viable
leader and starts an election. This happens to all nodes when
they start up, since none of them is leader.

The follower starts an election by transitioning to candi-
date, voting for itself and issuing vote requests in parallel to
all other nodes. Then, either (a) the candidate becomes the
new leader being voted by more than half of the cluster,
or (b) another candidate establishes itself as leader and
this candidate transitions back to follower, after receiving
a heartbeat from the new leader, or (c) there is no winner
because of a split vote, since none of the candidates collects
the required number of votes to be the new leader. When
split vote happens, each candidate waits again for a random
election timeout to send another round of vote requests and
initiate new election.

If the election timeout was not random but fixed and equal
for all nodes, a split vote could be repeated indefinitely (e.g.
all cluster nodes become candidates simultaneously and vote
for themselves repeatedly). Thus, Raft uses random election
timeouts to ensure that split votes are rare and resolved
quickly. The random election timeout must be higher than
the heartbeat timeout, otherwise heartbeat messages do not
have the time to reach all followers and useless elections
are triggered. Simultaneously, it should be low enough for
quick detection of leader failures and decreased periods of
system unavailability, over which no leader exists to serve
the commands.

B. Command replication and Response time

Once a leader is elected, it serves all incoming commands
to the cluster. Commands received by the leader, as well as
commands received by the followers and redirected to the
leader, are appended to its series of commands. Leader with
newly appended commands issues a first round of append
requests in parallel to all other nodes to replicate these
commands. When the leader gets the replies from more than
half of the cluster, the commands are safely replicated and
the leader applies the commands to its state machine. Now,
the commands are considered as committed. Then, the leader
sends a second round of append requests to the followers, in
order for them to apply the already replicated commands
to their state machines. If followers crash or run slowly,
or if network packets are lost, the leader retries sending
append requests infinitely until all followers eventually store
all commands. The response time of the cluster is defined as
the delay introduced between the moment that a command is

received by a cluster node, either leader or follower, and the
moment that the command is applied to its state machine.

IV. RAFT OVER NETWORK
(ASSUMING INSTANT FAILURES)

Although Raft designers focused on a cluster deployed
over a fully connected mesh network with links featuring
equal and almost negligible delays, many real Raft-operated
clusters rely on networks with unequal and remarkable delays
on their links. In the latter case, the nodes with lower sum
of delays to the other nodes, named as central nodes, most
probably collect first the required votes to become leaders
than the nodes on the edge. Although the election of a central
node facilitates faster communication between the leader and
the majority of the followers, it is not certain that it is
minimizing the expected response time, which also depends
on the rates of the incoming commands to the cluster nodes.

More specifically, assuming a cluster N with N nodes,
the expected response time for the commands received by
each cluster node ni ∈N is

trep
i = ∑

nl∈N
πlt

rep
il , (1)

where trep
il is the response time for a command sent to ni given

that nl ∈N is the current leader after multiple leadership
transitions, which happens with probability πl , named as
leadership probability of nl . Time trep

il is spent in order (a)
ni to redirect its incoming command to leader nl , (b) nl to
replicate this command to the cluster through the first round
of append requests, (c) nl collect the append replies from
the majority of the cluster nodes and finally (d) nl to inform
ni, and the whole cluster, that the command is committed
through the second round of append requests. Then, the
expected response time over all nodes, using also Equation 1,
is modeled as

trep = ∑
ni∈N

λit
rep
i = ∑

ni∈N
∑

nl∈N
λiπlt

rep
il , (2)

where λi is the normalized rate of incoming commands
received by ni (the sum of normalized rates for all nodes
is ∑

N
i=1 λi = 1). Table I summarizes the notation that is used

in the following sections.
Given a network with stable response times trep

il and
incoming command rates λλλ = [λ1,λ1, . . . ,λN ], trep can be
minimized by configuring the leadership probabilities πππ =
[π1,π1, . . . ,πN ]. For the sake of simplicity, it is assumed
that the network topology, the delays on its links and the
incoming command rates are stable over time, as well as that
the packet loss ratios are negligible. The presented results can
be easily extended to scenarios that some of these parameters
do not hold. For example, under these assumptions, if all
rates λi are equal to 1/N and nc is the most central node,
then trep is minimized for πc = 1 (Figure 1.a), while if all
commands are sent to another node nr and λr = 1, then trep is
minimized for πr = 1 (Figure 1.b), whichever is the network
topology and the centrality of nr. The latter is true since the
existence of a leader different from nr would result in extra
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TABLE I
NOTATION SUMMARY

N cluster of N nodes {n1,n2, . . . ,nN}
N ′ subset of N

N −ni set of subsets of N −{ni} with cardinality d(N−1)/2e
trep
il response time for a command sent to ni, when nl is leader

trep
i expected response time for a command sent to ni

trep expected response time for all commands
tout
o fixed minimum election timeout for all nodes

tout
i random part of election timeout of node ni

αi maximum tout
i (default 1, always ≤ 1)

f (τ) PDF of standard uniform distribution
F̄(τ) CCDF of standard uniform distribution
di j delay on the link between ni and n j

dl∗ d(N−1)/2eth highest delay from nl to all other nodes
dN ′

liz the lowest tout
z − tout

i , in order ni to be voted
at least by {ni}∪N ′ after the failure of leader nl

pli probability that ni is the next leader after nl

πi probability that ni is leader after multiple transitions
λi normalized rate of commands sent to ni (∑N

i=1 λi = 1)

delays for redirecting all commands from nr to the other
leader.

In the three following subsections, it is also assumed that
the leadership transitions happen only due to instant failures
of the leaders. Failures are called instant when the leader
remains off for a period of time almost equal to the average
election timeout, thus, it is up again to participate in the
following election. In each subsection is presented how the
leadership probabilities πππ are modeled as functions of the
ranges of the random election timeouts. Starting with the
simplest network with unequal delays between the nodes,
which is a 3-node bus network, simple models are presented
for estimating theoretically the leadership probabilities and
the expected response time.

A. 3-node bus network

Let’s assume a cluster N with N = 3 interconnected nodes
n1, n2 and n3 connected through a bus network, where n2 is
located in the middle with equal distances to n1 and n3, as it
is depicted in Figure 2(a). The delay of the link connecting
two nodes is mainly due to the signal propagation, thus it is
proportional to its length, which means that the delays from
n1 to n2 and n3 are d and 2d respectively. Each node ni ∈N
chooses its election timeout tout

o +tout
i , where tout

o is fixed and
tout
i is sampled from the standard uniform distribution with

Probability Density Function (PDF) f (τ) = 1 for τ ∈ [0,1]
and 0 otherwise.

Leadership probabilities: Assuming that n1 is the leader
that has failed, n3 becomes the successive leader, if and only
if its vote request is received by n2 before n2 attempts to
send its own vote requests. Otherwise, n2 votes for itself
and also gets the vote of n1 that is closer to n2, thus n2
wins the leadership with 2 votes out of 3. The lower part
of Figure 2(a) depicts this fact that n3 wins the vote of n2,
by illustrating the timeout of n3 (tout

o + tout
3 ) ending at least

time d before the timeout of n2 (tout
o + tout

2 ). Moreover, the
heartbeat requests of n1 are received by n2 and n3 with delays
d and 2d respectively. Both followers start their timeouts
once they receive the last heartbeat of n1, thus n2 has a
head start of time d, as it is depicted in the upper part of
Figure 2(a). Obviously, n3 becomes the next leader, if and
only if d+ tout

o + tout
2 > 2d+ tout

o + tout
3 +d⇒ tout

2 > tout
3 +2d.

As follows, assuming that 2d ≤ 1, the probability that n3 is
the successive leader after n1 is

p = Pr[tout
2 > tout

3 +2d] =
∫

∞

−∞

∫
∞

τ3+2d
f (τ3) f (τ2)dτ2dτ3

=
∫ 1−2d

0

∫ 1

τ3+2d
dτ2dτ3 =

(1−2d)2

2
. (3)

Using Markov chain to model the leadership transitions
from one node to the other, occurred due to multiple instant
failures, we get the transition probability matrix

P =

 0 1− p p
1/2 0 1/2

p 1− p 0

 ,
where the probability in row x and column y is the transition
probability from node nx to node ny. The matrix is symmetric
because of the symmetric network topology. The transition
probability from n3 to n1 is the same as the one from n1 to
n3, that is p. Similarly, the transition probabilities from n2
to either n1 or n3 are the same and equal to 1/2. As follows,
the steady-state probabilities are given by the vector

πππ =

[
1

4−2p
,

1− p
2− p

,
1

4−2p

]
=

[
1

3+4d−4d2 ,
1+4d−4d2

3+4d−4d2 ,
1

3+4d−4d2

]
, (4)

where the steady-state probability πi models the leadership
probability of ni. Apart from the case of zero delay d = 0,
where p = 1/2 and all leadership probabilities are equal to
1/3, for all other delays, the leadership probability of the
central node is higher than that of the nodes on the edges.

Response time: The response time trep
11 is the time needed

by n1, when it is both leader and command receiver, to send
the first round of append requests to all other nodes and
collect at least 2 replies out of 3, which are its own reply
(zero delay) and the reply of the nearby n2 (two times delay
d for the exchanged request and reply between n1 and n2).
Thus, trep

11 = d + d = 2d. For n2 and n3, the corresponding
response times are the same and equal to trep

22 = trep
33 = 2d. On

the other hand, commands received by follower n1, when n2
is the leader, increase the response time to trep

12 = d + trep
22 +

d = 4d, since extra delay d is added twice to the response
time trep

22 due to the command redirection from follower n1
to leader n2 and the append request of the second round sent
from leader n2 to n1. Similarly, trep

13 = 2d + trep
33 + 2d = 6d,

since the delay on the connection between n1 and n3 is 2d.
Finally, trep

32 = trep
12 = 4d, trep

31 = trep
13 = 6d and trep

21 = trep
23 =

trep
33 + 2d = 4d. The expected response time is modeled by

Equation 2, using the previously estimated probabilities πππ
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(d) 5-node bus network: tout
2 > tout
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3 > tout

4 +2d, tout
5 > tout

4 and lead-
ership is transited from n1 to n4, since the latter is voted at least by itself,
n3 and n5.

Fig. 2. 3-node and 5-node bus networks assuming instant failures. The vertical axis depict the time sequence of the messaging and the duration of the
election timeouts.

and the given incoming command rates λλλ .

Equalized leadership probabilities: Given the uncontrol-
lable λλλ , the expected response time can be minimized by
only adjusting the leadership probabilities πππ , which in turn
happens by editing the ranges of the random election time-
outs tout

i . Being agnostic to λλλ , as it is already illustrated in
Figure 1, we cannot provide the πππ minimizing the expected
response time, however, we can show e.g. how the leadership
can be shared equally between the three nodes, just for the
purpose of showcasing the capabilities of manipulating the
leadership probabilities.

By editing tout
1 and tout

3 to be sampled from a uniform dis-
tribution in the shorter range [0,α] (with PDF (1/α) f (τ/α)
and α < 1), the average election timeouts of the nodes at the
edge, n1 and n3, become lower than that of the central node
n2, thus n1 and n3 win more elections and the probabilities
π1 and π3 are increased, while π2 is decreased. The value
of α , for which the increased π1 and π3 are equalized with
the decreased π2, is estimated below. If α ≤ 1−2d, then the

transition probability of Equation 3 changes to

p =
∫

∞

−∞

∫
∞

τ3+2d

1
α

f
(

τ3

α

)
f (τ2)dτ2dτ3

=
1
α

∫
α

0

∫ 1

τ3+2d
dτ2dτ3 = 1−2d− α

2

and the leadership probabilities are modeled as

πππ =

[
1

2+4d +α
,

4d +α

2+4d +α
,

1
2+4d +α

]
.

If 4d < 1 and α = 1 − 4d, then all nodes have equal
leadership probabilities π1 = π2 = π3.

Now, let’s generalize by estimating the leadership proba-
bilities and the expected response time of a cluster operating
over any network.

B. General case network

Let’s assume a cluster N with N nodes, where the random
part tout

i of the election timeout of each node ni ∈ N is
sampled from the range [0,αi] with PDF (1/αi) f (τ/αi). The
Complementary Cumulative Distribution Function (CCDF)
of the standard uniform distribution is denoted as F̄(τ) =
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∫
∞

τ
f (τ ′)dτ ′= 1−τ for τ ∈ [0,1], 1 for τ < 0 and 0 otherwise.

Each node ni has its own CCDF F̄(τ/αi), which is the
probability that tout

i ≥ τ . The delay between two nodes
ni,n j ∈N is di j = d ji, with dii = 0. The heartbeat timeout
is twice the maximum delay between every couple of nodes
and it is an order of magnitude lower than the minimum
election timeout, which is equal to the fixed tout

o for zeroed
random part, thus maxni,n j∈N di j� tout

o .

Leadership probabilities: Given a leader nl ∈N that has
failed, two followers ni 6= nl and nz 6= ni,nl

(*) initiate their
election timeouts when they receive the last heartbeat of
nl . This happens with delay dli and dlz respectively after
nl sending this heartbeat. Thus, as it is depicted in Figure
3(a), ni becomes candidate and votes for itself, if its timeout
plus dli is less than the timeout of every other follower nz
plus dlz plus the delay on the forwarding of the vote request
of nz to ni, which is equivalent to

dli + tout
i < dlz + tout

z +dzi, ∀nz 6= ni,nl . (5)

Otherwise, ni remains follower voting for another follower
nz, which changed to candidate and sent the vote request
earlier. In addition, candidate ni is voted by follower n j 6= ni,
if the vote request of ni goes earlier to n j than the vote
request of every other candidate nz, as it is illustrated in
Figure 3(b), which is equivalent to

dli + tout
i +di j < dlz + tout

z +dz j, ∀nz 6= ni,nl , or
tout
z > tout

i +dli−dlz +di j−dz j, ∀nz 6= ni,nl . (6)

Keep in mind that Equation 5 is given by Equation 6 by
setting n j = ni, since ni is voted by itself if and only if it
becomes candidate.

Based on the above, ni is voted by itself and at least a set
of other nodes N ′ ⊆N −{ni}, if Equation 6 holds for ni
and every node n j ∈N ′, or equivalently

tout
z > tout

i +dli−dlz + max
n j∈{ni}∪N ′

{di j−dz j}, ∀nz 6= ni,nl , or

tout
z > tout

i +dN ′
liz , ∀nz 6= ni,nl , (7)

(*)ni 6= nl and nz 6= ni,nl are equivalent to ni ∈N −{nl} and nz ∈N −
{ni,nl} respectively.

where

dN ′
liz = dli−dlz + max

n j∈{ni}∪N ′
{di j−dz j}. (8)

From Equation 7, dN ′
liz is the lower bound of the timeout

difference tout
z − tout

i . If Equation 7 is satisfied, then ni is
voted at least by(**) all nodes in {ni}∪N ′ after the failure
of leader nl . This happens with probability

pN ′
li = Pr[{ni v.l. {ni}∪N ′}]

= Pr
[ ⋂

nz 6=ni,nl

{tout
z > tout

i +dN ′
liz }

]
=
∫

∞

−∞

1
αi

f
(

τi

αi

)(
∏

nz 6=ni,nl

∫
∞

τi+dN ′
liz

1
αz

f
(

τz

αz

)
dτz

)
dτi

=
1
αi

∫
αi

0
∏

nz 6=ni,nl

F̄
(τi +dN ′

liz

αz

)
dτi, (9)

Assuming that N −ni is the family of sets over N −{ni}
that have cardinality equal to d(N − 1)/2e, if ni v.l. itself
and a set of nodes N ′ ∈N −ni , then ni is the next leader,
since it is voted by the cluster majority. As follows, ni is the
successive leader after nl with probability

pli = Pr
[ ⋃

N ′∈N −ni

{ni v.l. {ni}∪N ′}
]
. (10)

Besides that, an election may end with split vote, in which
case it is repeated and most probably the previous leader is
re-elected. This happens because the previous leader initiated
its election timeout during the first election that ended with
split vote, while the other nodes restart their timeouts for the
repeated election. In this way, the timeout of the previous
leader most probably ends first and much earlier than the
others. As follows, the probability of no leadership transition
is approximately the probability of split vote, which is the
complement of having leadership transition, thus

pll = 1− ∑
ni 6=nl

pli. (11)

The transition probability matrix is

P =
[

pli : ∀nl ,ni ∈N
]

(12)

and the leadership probabilities πππ are modeled as the eigen-
vector of P with eigenvalue equal to one (πππP = πππ), which
always exists due to the Perron–Frobenius theorem.

Response time: The response time is

trep
il = 2(dil +dl∗), (13)

where dl∗ is the delay dlz, between the leader nl and the node
nz 6= nl that is ranked d(N−1)/2eth (ties broken arbitrarily),
when all cluster nodes apart from nl are increasingly ordered
according to their delay to nl . The response time is actually
the sum of (a) delay dil on the command redirection from
ni to the leader, plus (b) delay 2dl∗ in order for the leader
to send the first round of append requests and receive the

(**)From now on, “is voted at least by” is written as “v.l.”
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corresponding replies from the cluster majority formed by the
d(N−1)/2e most nearby nodes, plus (c) delay dli = dil for
sending back to ni the append request of the second round.
The expected response time is modeled again by Equation 2.

Back to 3-node bus network: Let’s now see how the previ-
ous models for the leadership probabilities and the response
time, applicable to any network, conclude to the same results
with Section IV-A, when they are specified for the 3-node
bus network. Having in mind that N −n3 = {{n1},{n2}} is
the set of subsets of N −{n3} with cardinality equal to
d(N−1)/2e= 1,

p13 = Pr[
⋃

N ′∈N −n3

{n3 v.l. {n3}∪N ′}]

= Pr[{n3 v.l. n3,n1}∪{n3 v.l. n3,n2}].

The event {n3 v.l. n3,n2} is equivalent to {n3 is voted by
n3,n2,n1} and superset of {n3 v.l. n3,n1}, since there is no
way n3 to be voted by n2 and not be voted by n1. If n2 votes
for n3, then the vote request of n3 has reached n2 before
its election timeout expires, which means that n2 does not
request votes, thus n1 receives vote request only from n3 and
certainly votes for it. Thus, using also Equation 9,

p13 = Pr[{n3 v.l. n3,n1}∪{n3 v.l. n3,n2}]

= Pr[{n3 v.l. n3,n2}] = p{n2}
13 =

=
1

α3

∫
α3

0
∏

nz 6=n3,n1

F̄
(τ3 +d{n2}

13z

αz

)
dτ3,

=
1

α3

∫
α3

0
F̄
(

τ3 +2d
α2

)
dτ3,

since d{n2}
132 = d13−d12+maxn j∈{n3,n2}{d3 j−d2 j}= 2d−d+

max{−d,d}= 2d. Assuming that α2 = α3 = 1,

p13 =
∫ 1

0
F̄(τ3 +2d)dτ3

=
∫ 1

0
(1− τ3−2d)dτ3 =

(1−2d)2

2
,

while if α2 = 1 and α3 ≤ 1−2d,

p13 =
1

α3

∫
α3

0
F̄(τ3 +2d)dτ3

=
1

α3

∫
α3

0
(1− τ3−2d)dτ3 = 1−2d− α3

2
.

As follows, the probabilities are the same with the ones
of Section IV-A, if α and p are mapped to α3 and p13
respectively. It is trivial to show that the response times of
both sections are identical, thus this part is dismissed.

In the following section, the models for the leadership
probabilities and the response time are specified for the
less trivial 5-node bus network, and then they are used for
equalizing again the leadership probabilities. Other indicative
network topologies, like symmetric star or fully connected
mesh networks with equal delays between the nodes, are triv-
ial cases for the equalization exercise since they already fea-
ture equal leadership probabilities under the default election
timeout ranges. Arbitrary network topologies, coming from

realistic scenarios of the Raft usage, would be investigated
in our future work.

C. 5-node bus network

Let’s assume a cluster N = {n1,n2, . . . ,n5} with N = 5
nodes, where ni ∈ {n1,n2,n3,n4} is before ni+1 and the
delay between them is d, as it is depicted in Figure 2(b).
With respect to the heartbeat and election timeout con-
straints described in the previous section, it is assumed that
maxni,n j∈N di j� tout

o ⇒ 4d� tout
o .

Leadership probabilities: Starting with the estimation
of the transition probabilities, and especially of p15,
N −n5 is the set of subsets of N −{n5} with cardinality
equal to d(N − 1)/2e = 2, which means that N −n5 =
{{n1,n2},{n1,n3},{n1,n4},{n2,n3},{n2,n4},{n3,n4}}.
From Equation 10,

p15 = Pr[{n5 v.l. n5,n1,n2}∪{n5 v.l. n5,n1,n3}
∪{n5 v.l. n5,n1,n4}∪{n5 v.l. n5,n2,n3}
∪{n5 v.l. n5,n2,n4}∪{n5 v.l. n5,n3,n4}]

= Pr[{n5 v.l. n5,n3,n4}] = p{n3,n4}
15 ,

since event {n5 v.l. n5,n3,n4} is superset of all previous
events. The rationale is that there is no way n5 to be voted
by n1 or n2 and not be voted by itself and the most nearby
n3 and n4 (explanations have been given for the analogous
case of leadership transition from n1 to n3 in the 3-node bus
network). From Equations 8 and 9,

p{n3,n4}
15 =

1
α5

∫
α5

0
F̄
(

τ5 +4d
α2

)
F̄
(

τ5 +4d
α3

)
F̄
(

τ5 +2d
α4

)
dτ5,

given that d{n3,n4}
152 = d15−d12+maxn j∈{n3,n4,n5}{d5 j−d2 j}=

d15− d12 + d35− d32 = 4d− d + 2d− d = 4d, d{n3,n4}
153 = 4d

and d{n3,n4}
154 = 2d. Figure 2(b) illustrates how much higher

must be tout
2 , tout

3 and tout
4 comparing to tout

5 , or in other words,
which are the lower bounds d{n3,n4}

152 , d{n3,n4}
153 and d{n3,n4}

154 of
the corresponding timeout differences, in order n5 to be the
successive leader after n1.

Similarly, p14 is estimated as the probability that n4 is
voted by itself and at least n2 and n3 or n3 and n5. Thus,
from Equations 8, 9 and 10,

p14 =Pr[{n4 v.l. n4,n2,n3}∪{n4 v.l. n4,n3,n5}]
=Pr[{n4 v.l. n4,n2,n3}]+Pr[{n4 v.l. n4,n3,n5}]

−Pr[{n4 v.l. n4,n2,n3,n5}]

=p{n2,n3}
14 + p{n3,n5}

14 − p{n2,n3,n5}
14

=
1

α4

∫
α4

0
F̄
(

τ4 +4d
α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4−2d
α5

)
+ F̄

(
τ4 +2d

α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4

α5

)
− F̄

(
τ4 +4d

α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4

α5

)
dτ4.

For the first term of the integrated sum above, the lower
bounds of the timeout differences, namely d{n2,n3}

142 = 4d,
d{n2,n3}

143 = 2d and d{n2,n3}
145 = −2d, are illustrated in Figure
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Fig. 4. Transition percent probabilities P and leadership percent probabilities πππ over the 5-node bus network assuming instant failures.

2(c). The same holds for the lower bounds d{n3,n5}
142 = 2d,

d{n3,n5}
143 = 2d and d{n3,n5}

145 = 0 of the second term and Figure
2(d). Following the same process (more details in Appendix),
all transition probabilities P are estimated and leadership
probabilities πππ are modeled by the corresponding eigenvector
of P.

Response time: Starting with delays d1∗ and d5∗, n3 is
ranked as d(N−1)/2e= 2nd regarding the node delays to n1
and n5 respectively, thus d1∗ = d13 = 2d and d5∗ = d53 = 2d.
Similarly, d2∗ = d3∗ = d4∗ = d, since the delays from the
other three nodes n2, n3 and n4 to the corresponding 2nd most
nearby node is d. From Equation 13, trep

i1 = 2(di1 + d1∗) =
2d(|i− 1|+ 2), trep

i2 = 2d(|i− 2|+ 1), trep
i3 = 2d(|i− 3|+ 1),

trep
i4 = 2d(|i−4|+1) and trep

i5 = 2d(|i−5|+2). The expected
response time is modeled by Equation 2.

Equalized leadership probabilities: Let’s now estimate the
ranges of the random election timeouts that equalize the
leadership probabilities. Figure 4(a) depicts the transition and
leadership probabilities for various delays d ∈ [0,0.03], when
all random parts tout

i of the election timeouts are sampled
from the same range [0,1] (αi = 1), as it is suggested by the
Raft designers. Delays d ∈ [0,0.03] conform to the constraint
4d� tout

o , assuming that tout
o = 1. Especially for the delays

d = 0.015 and 0.025, the corresponding probabilities are
marked in all relative figures, since these two cases will be
further investigated in our experimentation.

As a proof of concept that leadership probabilities can
be adjusted as we wish, even for minimizing the expected
response time for any given λλλ , we compute the ranges [0,αi]
of the random part tout

i of the election timeouts that equalize
the leadership probabilities. In particular, for each delay
d ∈ [0,0.03] that is integral multiple of 0.001, exhaustive
search for the minimum sum of absolute differences between
the leadership probabilities (|π1− π2|+ |π1− π3|) is done.
The area of search is the 2-dimensional discrete space

produced by α1 and α2 by increasing them from 0 to 1
with step 0.001. It is assumed that α3 = 1, as well as that
α4 = α2 and α5 = α1 because of the symmetric positions
of the corresponding nodes. Using polynomial modeling,
the relationships of the equalizing αi with d are expressed
as α5 = α1 = 0.99− 11.47d (R2 = 99.7%) and α4 = α2 =
0.99− 4.29d (R2 = 99.4%), assuming that α3 = 1. Figure
4(b) shows the transition probabilities and the almost equal
leadership probabilities, when the ranges of the random part
of the election timeouts are given by these linear functions
of delay d.

V. RAFT OVER NETWORK
(ASSUMING LONG-TERM FAILURES)

In this section, the main difference compared with the
previous Section IV is that leadership transitions happen due
to long-term failures of the leaders. Failures are called long-
term when the leader goes down and it is up again after the
new leader has been elected and before a new failure occurs.
Thus, there is no possibility of the failed leader to be also
the successive leader.

Leadership probabilities: Assuming again a cluster N
with N nodes, after the long-term failure of leader nl ∈N ,
ni 6= nl is voted by itself and at least a cluster subset
N ′ ⊂ N − {nl ,ni}, if Equation 7 holds for N ′ with
probability given by Equation 9. However, there are two main
differences in this case. One difference is that cluster subset
N ′, although it has the same cardinality with before and
equal to d(N−1)/2e, belongs to a new family of sets over
N −{nl ,ni}, noted as N −nl ,ni , which is a subset of the
previous larger family of sets N −ni . This happens because
the failed leader nl does not vote for the successive leader.
The second difference is that the election winner after a split
vote is any other node apart from the failed leader.

In case of no split vote, the transition probability from nl

8
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to ni is given by the modified Equation 10, that is

pno-split
li = Pr

[ ⋃
N ′∈N −nl ,ni

{ni v.l. {ni}∪N ′}
]
.

Then, the split vote probability is

psplit
l = 1− ∑

ni 6=nl

pno-split
li

and the transition probability from nl to ni is

pli = pno-split
li + psplit

l

(
pno-split

li + psplit
l (pno-split

li + . . .)
)

= pno-split
li

(
1+ psplit

l +(psplit
l )2 + . . .

)
=

pno-split
li

1− psplit
l

,

since the election is repeated after each split vote with prob-
ability psplit

l and node ni wins each of the repeated elections
with probability pno-split

li . The transition probability matrix P
is given by Equation 12 with pll = 0, while the leadership
probabilities πππ are modeled again by the eigenvector of P
with eigenvalue equal to one.

Response time: No changes between the two types of
failure, regarding the response time.

Equalized leadership probabilities over the 5-node bus
network: The same exercise is repeated here for showcasing
the usage of the new model, searching again the election
timeout ranges that equalize the leadership probabilities over
the 5-node bus network. Figure 5 depicts the leadership
probabilities for the same delays d ∈ [0,0.03], when the
random parts tout

i of the election timeouts are sampled from
the same range [0,1] (αi = 1) and the failures are either
instant (pink lines) or long-term (deep-purple lines). Obvi-
ously, the probabilities of each failure type are almost equal
between them, thus both models for leadership probabilities
can be used without considering if all failures are instant
or long-term. After repeating the same search with the one
in Section IV-C, the relationship between the equalizing αi

and delay d are α5 = α1 = 1− 10.13d (R2 = 99.98%) and
α4 = α2 = 1−2.70d (R2 = 99.97%), assuming that α3 = 1.

VI. TESTBED EXPERIMENTATION

Extended experimentation has been performed over the
NITOS testbed [21]. A distributed key-value data store is
built using the open-source Raft implementation of etcd [9].
More specifically, raftexample is used, which is an example
usage of the Raft library of etcd. According to etcd version
3.3.0− rc.0, time is slotted and the heartbeat/vote requests
are sent when slots start. The election timeouts are integral
multiples of slot and the slot duration is 100 milliseconds.
The fixed minimum election timeout is 10 slots, thus tout

o = 1
second. The random part of the election timeout, by default,
is uniformly sampled between 0 and 9 slots, which is the
discretized form of the continuous range [0,1] second. In the
following experiments, Raft is executed over the 3-node and
5-node bus networks and all probabilities and response times
of our interest are measured and compared to the results of
the already presented models.

Leadership probabilities over the 3-node bus network,
assuming instant failures: The instant failures are emulated
by modifying the code of raftexample, in order each leader
to send only 8 heartbeats. Followers assume that leader
has failed after sending its 8th heartbeat, but it is always
up and votes for the successive leader, as it would happen
after an instant failure. The failures are repeated more than
40,000 times. The transition and leadership probabilities
are measured by tracking the etcd output and counting
how many times each node has been leader and successive
leader of another one that has failed. Moreover, random
delays sampled between 0 and 99 milliseconds are introduced
before nodes send their requests, emulating the fact that the
node timers are not necessarily synchronized in a real geo-
distributed cluster.

Figure 6(a) presents the transition and leadership probabil-
ities of a cluster operating over the 3-node bus network, when
delay d corresponds to either 5, 15, 25 or 35 milliseconds.
The red ‘x’-marks depict the measured (through experimen-
tation) probabilities, the bars illustrate their theoretically
expected values and the red numbers show their differences.
The right bar of each couple corresponds to equal election
timeout ranges, while the left bar corresponds to ranges
that equalize the leadership probabilities. The line density
and symbol of each couple corresponds to a delay given
by the legend. The measured value of p is the average of
the measured p13 and p31, which are very close to each
other and theoretically expected to be equal due to the
network symmetry. The same holds for the presented as
experimentally measured π1 = π3 that is the average of the
measured π1 and π3. The measured values of all probabilities
are very close to their theoretically expected values.

When nodes use equal ranges (α = α2 = 1), π2 increases
and π1 = π3 decreases with d. On the other hand, when nodes
use the equalizing ranges given at the end of Section IV-A
(α = 1−4d and α2 = 1), π2 and π1 = π3 are always equal.
The absolute differences between the measured and the
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(c) The 5-node bus network assuming long-term failures.

Fig. 6. Transition and leadership percent probabilities over the 3-node and 5-node bus networks assuming either instant or long-term failures. The left
and right bar of each couple correspond respectively to equal and equalizing (regarding leadership probabilities) election timeout ranges. Couples with
different density and symbol correspond to different delays. The bar heights and the black-bold numbers show the theoretically expected values, the red
‘x’-marks depict the measured (through experimentation) values and the red numbers give the differences between experimentation and theory.
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theoretically expected values of all leadership probabilities
are less than 0.3%. It is worth mentioning that delay d should
be expressed in seconds, as the rest time variables do, thus
5 milliseconds correspond to delay d = 0.005. For a delay
equal to 25 milliseconds (d = 0.025) and α = 1−4 ·0.025 =
0.9 second or 9 slots, the random part of the election timeout
is sampled between 0 and 8 slots. For α that is not integral
multiple of slot, various integral multiples are used from
election to election as upper bounds of the random part, so
that their average is equal to α . For example, if delay is 5
milliseconds and α = 1−4 ·0.005= 0.98 second or 9.8 slots,
1 second is used as upper bound four times more than 0.9
second.

Leadership probabilities over the 5-node bus network
assuming instant failures: Figure 6(b) shows the respective
results over the 5-node bus network, for delay d corre-
sponding to either 15 or 25 milliseconds. The theoretically
expected and black-written values, on top of the bars, are
the same with the ones already presented in Figure 4. In
addition, the types and colors of the lines in the middle
of the bars indicate the corresponding lines of Figure 4.
The experimentation results are grouped again, presenting
the averages of some couples (e.g. the averages of p15 and
p51 or π1 and π5), since the probabilities of each of these
couples are almost equal, as it is theoretically expected. The
inequality among the leadership probabilities increases with
the delay, when all nodes use equal ranges (all αi = 1). On
the contrary, the leadership probabilities are almost equal for
both delays, when nodes use the equalizing ranges given at
the end of Section IV-C (α5 = α1 = 0.99− 11.47d, α4 =
α2 = 0.99− 4.29d and α3 = 1). The absolute differences
between experimentation and theory regarding the leadership
probabilities are less than 0.6%. Once again, when the upper
bounds of the random part of the election timeouts are not
integral multiples of slot, the same approach is used with the
3-node bus network.

Leadership probabilities over the 5-node bus network as-
suming long-term failures: Figure 6(c) shows the respective
results over the 5-node bus network, assuming long-term
failures. Deeper colours are used for indicating the different
failure type, as it happens in Figure 5 that probabilities of
the long-term failures are coloured deeper than the ones of
the instant failures. In this round of experiments, the code
is modified to disable leaders replying to vote requests. In
this way, the long-term failures are emulated and repeated
as before measuring again the probabilities of our interest.
The results regarding the distribution of the leadership prob-
abilities are the same with before, when assuming instant
failures, either with usage of equal ranges (all αi = 1) or the
equalizing ranges given at the end of Section V (α5 = α1 =
1−10.13d, α4 = α2 = 1−2.70d and α3 = 1). The absolute
differences between experimentation and theory regarding
the leadership probabilities are less than 0.4%.

Response time of the 3-node bus network: The last round
of the presented experiments refers to the response time.
The code is modified once again, changing the HTTP PUT
requests sent to the Raft nodes to be blocking and return only

TABLE II
RESPONSE TIME (IN MILLISECONDS) OVER THE 3-NODE BUS NETWORK.

delay (milliseconds) 5 15 25 35

λ1 = 1, equal ranges 72 (20) 112 (60) 154 (100) 193 (140)
λ1 = 1, eq/ing ranges 70 (20) 111 (60) 151 (100) 192 (140)
λ2 = 1, equal ranges 70 (17) 104 (50) 133 (82) 170 (115)
λ2 = 1, eq/ing ranges 67 (17) 101 (50) 139 (83) 169 (117)

TABLE III
RESPONSE TIME (IN MILLISECONDS) OVER THE 5-NODE BUS NETWORK.

delay (milliseconds) 15 25

λ1 = 1, equal ranges 152 (101) 218 (167)
λ1 = 1, eq/ing ranges 159 (102) 221 (170)
λ2 = 1, equal ranges 135 (82) 185 (135)
λ2 = 1, eq/ing ranges 144 (84) 194 (140)
λ3 = 1, equal ranges 130 (75) 182 (123)
λ3 = 1, eq/ing ranges 130 (78) 189 (130)

after the inserted value is updated at the receiving node. In
this way, the time spent in each request is proportional to
the response time, which is measured with Postman [22].
Requests are repeated for more than 20,000 times and the
measured response time is the average of these repeats. The
elections are repeatedly triggered due to instant failures and
the requests are sent to either a central (n2) or an edge
(n1) node of the 3-node bus network (results for n3 are the
same with the ones for n1). The average response times are
presented in Table II, as well as the theoretically expected
response times, which are inside the parentheses.

If only n1 receives request (λ1 = 1 and λ2 = λ3 = 0), under
either equal or equalizing ranges for all nodes, the expected
response time is trep = trep

1 = π1trep
11 +π2trep

12 +π3trep
13 = 2dπ1+

4dπ2 +6dπ3 = 4d(π1 +π2 +π3) = 4d, since π1 = π3 in both
cases. This is also verified by the first two table rows with
λ1 = 1, where the average response time is the same for using
both equal and equalizing ranges, and it is actually 4 times
the delay plus 50 to 60 milliseconds needed for processes
not related to Raft. On the other hand, if only n2 receives
requests (λ2 = 1 and λ1 = λ3 = 0), the expected response time
is trep = trep

2 = π1trep
21 +π2trep

22 +π3trep
23 = 4dπ1+2dπ2+4dπ3 =

2d(π1+π2+π3)+2d(π1+π3) = 2d(1+2π1), since π1 = π3,
which turns to 2d(1+2/3) = 10d/3 under equalizing ranges
and π1 = 1/3. Under equal ranges, using Equation 4, the
expected response time is 2d(1+2/(3+4d−4d2))≈ 10d/3
for all tested delays. The last two table rows with λ2 = 1
confirm experimentally that the average response time is ap-
proximately 10/3 times the delay, plus 50 to 60 milliseconds
as before.

Response time of the 5-node bus network: Table III
presents the average response times and their theoretically
expected values over the 5-node bus network. For example,
in the first row and first column of this table, where all
requests go to n1 (λ1 = 1 and rest λi = 0) and all election
timeout ranges are equal, the expected response time is
trep = trep

1 = π1trep
11 +π2trep

12 +π3trep
13 +π4trep

14 +π5trep
15 = 4dπ1+

11



4dπ2+6dπ3+8dπ4+12dπ5 = 16dπ1+12dπ2+6dπ3 = 6d+
4dπ1, which turns to 6 ·15+4 ·15 ·18.4%= 101 milliseconds
for delay equal to 15 milliseconds (d = 0.015). Probability
π1 = 18.4%, as it is shown in Figure 6(b). The measured
average response time is again increased by 50 to 60 mil-
liseconds. This difference is almost fixed for all table cells,
which validates that the time needed for the Raft operations
is approximately the theoretically expected one.

VII. CONCLUSIONS & FUTURE WORK

In this paper, models are presented for estimating the
leadership probabilities and the response time of a Raft-
operated cluster over a network. The models are used in order
for the ranges of the random election timeouts to be adjusted,
such as the leadership probabilities and the expected response
time to be the desired, e.g. the latter one to be minimized.
The models are specified for a 3-node and a 5-node bus
network, which both are simple cases pointing out the logic
behind the models. The capabilities of manipulating the
leadership probabilities, using these models, are presented
by equalizing them over both bus networks. Over all tested
cases, the aimed leadership probabilities are achieved, since
the deviation between the experimentation data and the the-
oretical estimations is always less than the negligible 0.6%.
As for the response time, the corresponding differences are
negligible again, since the 50 to 60 milliseconds extra delay
is not related to the Raft protocol.

A main issue that we need to consider in our future work
is to evaluate the presented models over network topologies
that are used in real distributed systems. Moreover, the effect
of the limited processing capabilities of the system nodes, as
well as the existence of various transmission rates and non-
zero packet loss ratios, should be considered in the models
formulation.
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APPENDIX
THE TRANSITION PROBABILITIES OF SECTION IV-C

After the failure of leader n1, n5 is the successive leader,
if it is voted at least by itself, n3 and n4, thus

p15 =p{n3,n4}
15

=
1

α5

∫
α5

0
F̄
(

τ5 +4d
α2

)
F̄
(

τ5 +4d
α3

)
F̄
(

τ5 +2d
α4

)
dτ5.

Otherwise, n4 is the successive leader, if it is voted at least
by itself and either n2,n3 or n3,n5, thus

p14 =p{n2,n3}
14 + p{n3,n5}

14 − p{n2,n3,n5}
14

=
1

α4

∫
α4

0
F̄
(

τ4 +4d
α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4−2d
α5

)
+ F̄

(
τ4 +2d

α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4

α5

)
− F̄

(
τ4 +4d

α2

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4

α5

)
dτ4.

Similarly, n3 is the successive leader, if it is voted at least by
itself and either n1,n2 or n4,n5. The event that n3 is voted at
least by itself and n2,n4 is subset of the event that is voted at
least by itself and n1,n2. This is true, since there is no way n3
to be voted by n2 and not be voted by n1. If the vote request
of n3 reaches n2 before the requests of the other potential
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candidates n4 and n5, then this request is also the first one
received by n1 that does not have enough time to transition
to candidate after it has failed. Thus,

p13 =p{n1,n2}
13 + p{n4,n5}

13 − p{n1,n2,n4,n5}
13

=
1

α3

∫
α3

0
F̄
(

τ3 +2d
α2

)
F̄
(

τ3−2d
α4

)
F̄
(

τ3−4d
α5

)
+ F̄

(
τ3

α2

)
F̄
(

τ3

α4

)
F̄
(

τ3

α5

)
− F̄

(
τ3 +2d

α2

)
F̄
(

τ3

α4

)
F̄
(

τ3

α5

)
dτ3.

Finally, n2 is the successive leader, if it is voted at least by
itself, n1 and n3, thus

p12 =p{n1,n3}
12

=
1

α2

∫
α2

0
F̄
(

τ2

α3

)
F̄
(

τ2−2d
α4

)
F̄
(

τ2−4d
α5

)
dτ2.

After leader n2 has failed, n5 is the successive leader,
if it is voted at least by itself, n3 and n4, thus

p25 =p{n3,n4}
25

=
1

α5

∫
α5

0
F̄
(

τ5 +2d
α1

)
F̄
(

τ5 +4d
α3

)
F̄
(

τ5 +2d
α4

)
dτ5.

Otherwise, n4 is the successive leader, if it is voted at least
by itself and either n2,n3 or n3,n5, thus

p24 =p{n2,n3}
24 + p{n3,n5}

24 − p{n2,n3,n5}
24

=
1

α4

∫
α4

0
F̄
(

τ4

α1

)
F̄
(

τ4 +2d
α3

)
F̄
(

τ4

α5

)
+ F̄

(
τ4 +2d

α1

)
F̄
(
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α3

)
F̄
(
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α5

)
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τ4 +2d

α1

)
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(
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α3

)
F̄
(

τ4

α5

)
dτ4.

Similarly, n3 is the successive leader, if it is voted at least
by itself and either n1,n2 or n2,n4 or n4,n5, thus

p23 =p{n1,n2}
23 + p{n2,n4}

23 + p{n4,n5}
23

− p{n1,n2,n4}
23 − p{n1,n2,n4,n5}

23 − p{n2,n4,n5}
23 + p{n1,n2,n4,n5}

23

=p{n1,n2}
23 + p{n2,n4}

23 + p{n4,n5}
23 − p{n1,n2,n4}

23 − p{n2,n4,n5}
23

=
1

α3

∫
α3

0
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τ3 +2d
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)
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(
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(
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)
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(
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(
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)
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(

τ3
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)
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)
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(
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(
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)
− F̄

(
τ3

α1

)
F̄
(

τ3
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)
F̄
(

τ3

α5

)
dτ3.

Finally, n1 is the successive leader, if it is voted at least by

itself, n2 and n3, thus

p21 =p{n2,n3}
21

=
1

α1

∫
α1

0
F̄
(

τ1 +2d
α3

)
F̄
(

τ1

α4

)
F̄
(

τ1−2d
α5

)
dτ1.

After n3 has failed, n1 is the successive leader, if it it
is voted at least by itself, n2 and n3, thus

p31 =p{n2,n3}
31

=
1

α1

∫
α1

0
F̄
(

τ1 +2d
α2

)
F̄
(

τ1 +2d
α4

)
F̄
(

τ1

α5

)
dτ1.

Otherwise, n2 is the successive leader, if it is voted at least
by itself and either n1,n3 or n3,n4, thus

p32 =p{n1,n3}
32 + p{n3,n4}

32 − p{n1,n3,n4}
32

=
1

α2
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)
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(
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)
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(

τ2

α5

)
dτ2.

Obviously, due to the bus symmetry, pi j = p ji,∀ni,n j ∈
N .
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